Computer Systems Fundamentals

Course Resources

Administrivia
Resources
Resources
MIPS Resources
Lab/Test/Assignment
Other

Week-by-Week

Tutorial
Laboratory
Wednesday 18 September Lecture Topics
Thursday 19 September Lecture Topics
Tutorial
Laboratory
Wednesday 25 September Lecture Topics
Thursday 26 September Lecture Topics
Tutorial
Laboratory
Weekly Test
Wednesday 02 October Lecture Topics
Thursday 03 October Lecture Topics
Tutorial
Laboratory
Weekly Test
Wednesday 09 October Lecture Topics
Thursday 10 October Lecture Topics
Tutorial
Laboratory
Weekly Test
Wednesday 16 October Lecture Topics
Thursday 17 October Lecture Topics
Tutorial
Laboratory
Weekly Test
Wednesday 23 October Lecture Topics
    Lecture Topics
    Tutorial
    Laboratory
    Weekly Test
    Wednesday 30 October Lecture Topics
      Thursday 31 October Lecture Topics
      Tutorial
      Laboratory
      Weekly Test
      Lecture Topics
        Lecture Topics
        Tutorial
        Laboratory
        Weekly Test
        Lecture Topics
          Lecture Topics
          Tutorial
          Laboratory
          Weekly Test
          Wednesday 20 November Lecture Topics
          Thursday 21 November Lecture Topics

          Topic-by-Topic

          Course Intro
          Integers


          Print size and min and max values of integer types
          #include <stdio.h>
          #include <limits.h>
          
          int main(void) {
          
              char c;
              printf("char               %lu bytes min=%20d, max=%20d\n", sizeof c, CHAR_MIN, CHAR_MAX);
              signed char sc;
              printf("signed char        %lu bytes min=%20d, max=%20d\n", sizeof sc, SCHAR_MIN, SCHAR_MAX);
              unsigned char uc;
              printf("unsigned char      %lu bytes min=%20d, max=%20d\n", sizeof uc, 0, UCHAR_MAX);
          
              short s;
              printf("short              %lu bytes min=%20d, max=%20d\n", sizeof s, SHRT_MIN, SHRT_MAX);
              unsigned short us;
              printf("unsigned short     %lu bytes min=%20d, max=%20d\n", sizeof us, 0, USHRT_MAX);
          
              int i;
              printf("int                %lu bytes min=%20d, max=%20d\n", sizeof i, INT_MIN, INT_MAX);
              unsigned int ui;
              printf("unsigned int       %lu bytes min=%20d, max=%20d\n", sizeof ui, 0, UINT_MAX);
          
              long l;
              printf("long               %lu bytes min=%20ld, max=%20ld\n", sizeof l, LONG_MIN, LONG_MAX);
              unsigned long ul;
              printf("unsigned long      %lu bytes min=%20d, max=%20lu\n", sizeof ul, 0, ULONG_MAX);
          
              long long ll;
              printf("long long          %lu bytes min=%20lld, max=%20lld\n", sizeof ll, LLONG_MIN, LLONG_MAX);
              unsigned long long ull;
              printf("unsigned long long %lu bytes min=%20d, max=%20llu\n", sizeof ull, 0, ULLONG_MAX);
          
              return 0;
          }
          

          Download integer_types.c

          #include <stdint.h>
          
          int main(void) {
          
                           // range of values for type
                           //             minimum               maximum
              int8_t   i1; //                 -128                  127
              uint8_t  i2; //                    0                  255
              int16_t  i3; //               -32768                32767
              uint16_t i4; //                    0                65535
              int32_t  i5; //          -2147483648           2147483647
              uint32_t i6; //                    0           4294967295
              int64_t  i7; // -9223372036854775808  9223372036854775807
              uint64_t i8; //                    0 18446744073709551615
          
              return 0;
          }
          

          Download stdint.c

          #include <stdio.h>
          
          int main(void) {
              // common C bug
              //
              // char may be signed (e.g. x86) or unsigned (powerpc)
              //
              // if char is signed (-128..127)
              // loop will incorrect exit for a byte containing 0xFF
              //
              // if char is unsigned (0..255)
              // loop will never exit
              //
              // fix bug by making c int
              //
          
              char c;
              while ((c = getchar()) != EOF) {
                  putchar(c);
              }
              return 0;
          }
          

          Download char_bug.c



          Print binary representation of ints
          #include <stdio.h>
          
          void print_bits(int value);
          int get_nth_bit(int value, int n);
          
          int main(void) {
              int a = 0;
              printf("Enter an int: ");
              scanf("%d", &a);
              print_bits(a);
              printf("\n");
              return 0;
          }
          
          // print the binary representation of a value
          void print_bits(int value) {
              // sizeof returns size in bytes and 1 byte == 8 bits
              int how_many_bits = 8 * (sizeof value);
              for (int i = how_many_bits - 1; i >= 0; i--) {
                  int bit = get_nth_bit(value, i);
                  printf("%d", bit);
              }
          }
          
          // extract the nth bit from a value
          int get_nth_bit(int value, int n) {
              return (value >> n) & 1;
          }
          

          Download print_bits_of_int.c

          Bitwise Operations

          Demonstrate C bitwise operations
          #include <stdio.h>
          
          void print_bits_hex(char *description, short n);
          void print_bits(short value);
          int get_nth_bit(short value, int n);
          
          int main(void) {
              short a = 0;
              printf("Enter a: ");
              scanf("%hd", &a);
              short b = 0;
              printf("Enter b: ");
              scanf("%hd", &b);
              printf("Enter c: ");
              int c = 0;
              scanf("%d", &c);
              print_bits_hex("     a = ", a);
              print_bits_hex("     b = ", b);
              print_bits_hex("    ~a = ", ~a);
              print_bits_hex(" a & b = ", a & b);
              print_bits_hex(" a | b = ", a | b);
              print_bits_hex(" a ^ b = ", a ^ b);
              print_bits_hex("a >> c = ", a >> c);
              print_bits_hex("a << c = ", a << c);
              return 0;
          }
          
          // print description then binary, hex and decimal representation of value
          void print_bits_hex(char *description, short value) {
              printf("%s", description);
              print_bits(value);
              printf(" = 0x%04x = %d\n", value & 0xFFFF, value);
          }
          
          // print the binary representation of a value
          void print_bits(short value) {
              // sizeof returns size in bytes and 1 byte == 8 bits
              int how_many_bits = 8 * (sizeof value);
              for (int i = how_many_bits - 1; i >= 0; i--) {
                  int bit = get_nth_bit(value, i);
                  printf("%d", bit);
              }
          }
          
          // extract the nth bit from a value
          int get_nth_bit(short value, int n) {
              return (value >> n) & 1;
          }
          

          Download bitwise.c



          Print hexadecimal directly (without using printf) usign bitwise opeators to extract digits
          #include <stdio.h>
          #include <stdio.h>
          
          void print_hex(int n);
          
          int main(void) {
              int a = 0;
              printf("Enter an int: ");
              scanf("%d", &a);
              printf("%d = 0x", a);
              print_hex(a);
              printf("\n");
              return 0;
          }
          
          void print_hex(int n) {
              int which_digit = 2 * (sizeof n);
              while (which_digit > 0) {
                  which_digit--;
                  int digit = (n >> (4 * which_digit)) & 0xF;
                  int ascii = "0123456789ABCDEF"[digit];
                  putchar(ascii);
              }
          }
          

          Download print_hex.c

          #include <stdio.h>
          
          // Andrew Taylor - andrewt@unsw.edu.au
          // 16/9/2019
          // Represent a small set of possible values using bits
          
          
          #define FIRE_TYPE      0x0001
          #define FIGHTING_TYPE  0x0002
          #define WATER_TYPE     0x0004
          #define FLYING_TYPE    0x0008
          #define POISON_TYPE    0x0010
          #define ELECTRIC_TYPE  0x0020
          #define GROUND_TYPE    0x0040
          #define PSYCHIC_TYPE   0x0080
          #define ROCK_TYPE      0x0100
          #define ICE_TYPE       0x0200
          #define BUG_TYPE       0x0400
          #define DRAGON_TYPE    0x0800
          #define GHOST_TYPE     0x1000
          #define DARK_TYPE      0x2000
          #define STEEL_TYPE     0x4000
          #define FAIRY_TYPE     0x8000
          
          int main(void) {
              // give our pokemon 3 types
              int pokemon_type = BUG_TYPE | POISON_TYPE | FAIRY_TYPE;
          
              printf("0x%04xd\n", pokemon_type);
          
              if (pokemon_type & POISON_TYPE) {
                  printf("Danger poisonous\n"); // prints
              }
          
              if (pokemon_type & GHOST_TYPE) {
                  printf("Scary\n"); // does not print
              }
          }
          

          Download pokemon.c


          Respresent set of small non-negative integers using bit-operations
          #include <stdio.h>
          #include <stdint.h>
          #include <assert.h>
          
          typedef uint64_t set;
          
          #define MAX_SET_MEMBER ((int)(8 * sizeof(set) - 1))
          #define EMPTY_SET 0
          
          set set_add(int x, set a);
          set set_union(set a, set b);
          set set_intersection(set a, set b);
          set set_member(int x, set a);
          int set_cardinality(set a);
          set set_read(char *prompt);
          void set_print(char *description, set a);
          
          void print_bits_hex(char *description, set n);
          void print_bits(set value);
          int get_nth_bit(set value, int n);
          
          int main(void) {
              printf("Set members can be 0-%d, negative number to finish\n", MAX_SET_MEMBER);
              set a = set_read("Enter set a: ");
              set b = set_read("Enter set b: ");
              print_bits_hex("a = ", a);
              print_bits_hex("b = ", b);
              set_print("a = ", a);
              set_print("b = ", b);
              set_print("a union b = ", set_union(a, b));
              set_print("a intersection b = ", set_intersection(a, b));
              printf("cardinality(a) = %d\n", set_cardinality(a));
              printf("is_member(42, a) = %d\n", (int)set_member(42, a));
              return 0;
          }
          
          set set_add(int x, set a) {
              return a | ((set)1 << x);
          }
          
          set set_union(set a, set b) {
              return a | b;
          }
          
          set set_intersection(set a, set b) {
              return a & b;
          }
          
          // return a non-zero value iff x is a member of a
          set set_member(int x, set a) {
              assert(x >= 0 && x < MAX_SET_MEMBER);
              return a & ((set)1 << x);
          }
          
          // return size of set
          int set_cardinality(set a) {
              int n_members = 0;
              while (a != 0) {
                  n_members += a & 1;
                  a >>= 1;
              }
              return n_members;
          }
          
          set set_read(char *prompt) {
              printf("%s", prompt);
              set a = EMPTY_SET;
              int x;
              while (scanf("%d", &x) == 1 && x >= 0) {
                  a = set_add(x, a);
              }
              return a;
          }
          
          // print out member of the set in increasing order
          // for example {5,11,56}
          void set_print(char *description, set a) {
              printf("%s", description);
              printf("{");
              int n_printed = 0;
              for (int i = 0; i < MAX_SET_MEMBER; i++) {
                  if (set_member(i, a)) {
                      if (n_printed > 0) {
                          printf(",");
                      }
                      printf("%d", i);
                      n_printed++;
                  }
              }
              printf("}\n");
          }
          
          // print description then binary, hex and decimal representation of value
          void print_bits_hex(char *description, set value) {
              printf("%s", description);
              print_bits(value);
              printf(" = 0x%08lx = %ld\n", value, value);
          }
          
          // print the binary representation of a value
          void print_bits(set value) {
              // sizeof returns size in bytes and 1 byte == 8 bits
              int how_many_bits = 8 * (sizeof value);
              for (int i = how_many_bits - 1; i >= 0; i--) {
                  int bit = get_nth_bit(value, i);
                  printf("%d", bit);
              }
          }
          
          // extract the nth bit from a value
          int get_nth_bit(set value, int n) {
              return (value >> n) & 1;
          }
          

          Download bitset.c

          #include <stdio.h>
          #include <stdint.h>
          
          int main(void) {
              // int16_t is a signed type (-32768..32767)
              // all operations below are defined for a signed type
              int16_t i;
          
              i = -1;
              i = i >> 1; // undefined -  shift of a negative value
              printf("%d\n", i);
              i = -1;
              i = i << 1; // undefined -  shift of a negative value
              printf("%d\n", i);
              i = 32767;
              i = i << 1; // undefined -  left shift produces a negative value
          
              uint64_t j;
              j = 1 << 33; // undefined - 1 type is int
              j = ((uint64_t)1) << 33; // ok
              return 0;
          }
          

          Download shift_bug.c

          #include <stdio.h>
          #include <stdlib.h>
          #include <assert.h>
          
          //
          // copy stdin to stdout xor each byte with value supplied on STDIN
          //
          //
          // Try
          // $ dcc xor.c -o xor
          // $ <xor.c xor 42
          // $ <xor.c xor 42|xor 42
          //
          
          int main(int argc, char *argv[]) {
              assert(argc == 2);
              char key = strtol(argv[1], NULL, 0);
              int c;
              while ((c = getchar()) != EOF) {
                  int xor_c = c ^ key;
                  putchar(xor_c);
              }
              return 0;
          }
          

          Download xor.c

          C Memory Model
          #include <stdio.h>
          #include <stdint.h>
          #include <stdlib.h>
          
          //
          // use a union to alias uint16_t, uint32_t,uint64_t types
          // to an array of bytes so we can see order (endian-ness)
          // bytes of integer type stored in memory
          //
          // what this program prints vary between platforms:
          // https://en.wikipedia.org/wiki/Endianness
          // CSE machines are little-endian
          //
          
          union overlay {
              uint16_t s;
              uint32_t i;
              uint64_t l;
              uint8_t  bytes[8];
          };
          
          void print_bytes(char *message, void *v, int n);
          
          int main(void) {
              union overlay u = {.l = 0};
          
              u.s = 0x1234;
              print_bytes("uint16_t s = 0x1234            ", u.bytes, 2); // @cse prints 34 12
              u.i = 0x12345678;
              print_bytes("uint32_t i = 0x12345678        ", u.bytes, 4); // @cse prints 78 56 34 12
              u.l = 0x123456789abcdef0;
              print_bytes("uint64_t l = 0x123456789abcdef0", u.bytes, 8); // @cse prints f0 de bc 9a 78 56 34 12
          
              if (u.bytes[0] == 0xf0) {
                  printf("little-endian machine\n");
              } else if (u.bytes[0] == 0x01) {
                  printf("big-endian machine\n");
              } else {
                  printf("unusual machine\n");
              }
          }
          
          
          void print_bytes(char *message, void *v, int n) {
              uint8_t *p = v;
              printf("%s, bytes[0..%d] = ", message, n - 1);
              for (int i = 0; i < n; i++) {
                  printf("%02x ", p[i]);
              }
              printf("\n");
          }
          

          Download endian.c

          #include <stdio.h>
          #include <stdint.h>
          #include <stdlib.h>
          
          
          int main(void) {
              double array[10];
          
              for (int i = 0; i < 10; i++) {
                  printf("&array[%d]=%p\n", i, &array[i]);
              }
          
              printf("\nexample computation for address of array element \\n\n");
          
              uint64_t a = (uint64_t)&array[0];
              printf("&array[0] + 7 * sizeof (double) = 0x%lx\n",     a + 7 * sizeof (double));
              printf("&array[0] + 7 * %lx               = 0x%lx\n", sizeof (double), a + 7 * sizeof (double));
              printf("0x%lx + 7 * %lx          = 0x%lx\n", a, sizeof (double), a + 7 * sizeof (double));
              printf("&array[7]                       = %p\n", &array[7]);
          }
          

          Download array_element_address.c

          #include <stdio.h>
          #include <stdint.h>
          #include <stdlib.h>
          
          void print_bytes(void *v, int n);
          
          struct s1 {
              uint8_t    c1;
              uint64_t   l1;
              uint8_t    c2;
              uint64_t   l2;
              uint8_t    c3;
              uint64_t   l3;
              uint8_t    c4;
              uint64_t   l4;
          };
          
          struct s2 {
              uint64_t   l1;
              uint64_t   l2;
              uint64_t   l3;
              uint64_t   l4;
              uint8_t    c1;
              uint8_t    c2;
              uint8_t    c3;
              uint8_t    c4;
          };
          
          int main(void) {
              struct s1 v1;
              struct s2 v2;
          
              printf("sizeof v1 = %lu\n", sizeof v1);
              printf("sizeof v2 = %lu\n", sizeof v2);
          
              printf("alignment rules mean struct s1 is padded\n");
          
              printf("&(v1.c1) = %p\n", &(v1.c1));
              printf("&(v1.l1) = %p\n", &(v1.l1));
              printf("&(v1.c2) = %p\n", &(v1.c2));
              printf("&(v1.l2) = %p\n", &(v1.l2));
          
              printf("struct s2 is not padded\n");
          
              printf("&(v2.c1) = %p\n", &(v2.l1));
              printf("&(v2.l1) = %p\n", &(v2.l2));
          }
          

          Download struct_packing.c

          Mips Basics
          #include <stdio.h>
          
          int main(void) {
              printf("I love MIPS\n");
              return 0;
          }
          

          Download i_love_mips.c

          main:
              la   $a0, string  # get addr of string
              li   $v0, 4       # 4 is print string syscall
              syscall
              jr   $ra
          
              .data
          string:
              .asciiz "I love MIPS\n"
          

          Download i_love_mips.s

          Mips Control
          add 17 and 25 and print result
          #include <stdio.h>
          
          int main(void) {
              int x = 17;
              int y = 25;
              printf("%d\n", x + y);
          
              return 0;
          }
          

          Download add.c

          #include <stdio.h>
          
          int main(void) {
              int x, y, z;
              x = 17;
              y = 25;
              z = x + y;
              printf("%d", z);
              printf("\n");
              return 0;
          }
          

          Download add.simple.c

          add 17 and 25 and print result
          main:                    #  x, y, z in $t0, $t1, $t2,
              li   $t0, 17         # x = 17;
          
              li   $t1, 25         # y = 25;
          
              add  $t2, $t1, $t0   # z = x + y
          
              move $a0, $t2        # printf("%d", a0);
              li   $v0, 1
              syscall
          
              li   $a0, '\n'       # printf("%c", '\n');
              li   $v0, 11
              syscall
          
              li   $v0, 0          # return 0
              jr   $ra
          

          Download add.s

          read a number and print whther its odd or even
          #include <stdio.h>
          
          int main(void) {
              int x;
          
              printf("Enter a number: ");
              scanf("%d", &x);
          
              if ((x & 1) == 0) {
                  printf("Even\n");
              } else {
                  printf("Odd\n");
              }
          
              return 0;
          }
          

          Download odd_even.c

          #include <stdio.h>
          
          int main(void) {
              int x, v0;
          
              printf("Enter a number: ");
              scanf("%d", &x);
          
              v0 = x & 1;
              if (v0 == 1) goto odd;
                  printf("Even\n");
              goto end;
          odd:
                  printf("Odd\n");
          end:
              return 0;
          }
          

          Download odd_even.simple.c

          read a number and print whther its odd or even
          main:
              la   $a0, string0    # printf("Enter a number: ");
              li   $v0, 4
              syscall
          
              li   $v0, 5          # scanf("%d", x);
              syscall
          
              and  $t0, $v0, 1     # if (x & 1 == 0) {
              beq  $t0, 1, odd
          
              la   $a0, string1    # printf("Even\n");
              li   $v0, 4
              syscall
          
              b end
          
          odd:                     # else
              la   $a0, string2    # printf("Odd\n");
              li   $v0, 4
              syscall
          
          end:
              li   $v0, 0          # return 0
              jr   $ra
          
              .data
          string0:
              .asciiz "Enter a number: "
          string1:
              .asciiz "Even\n"
          string2:
              .asciiz "Odd\n"
          

          Download odd_even.s

          print integers 1..10 one per line
          #include <stdio.h>
          
          int main(void) {
              for (int i = 1; i <= 10; i++) {
                  printf("%d\n", i);
              }
              return 0;
          }
          

          Download print10.c

          #include <stdio.h>
          
          int main(void) {
              int i;
              i = 1;
          loop:
              if (i > 10) goto end;
                  i++;
                  printf("%d", i);
                  printf("\n");
              goto loop;
          end:
              return 0;
          }
          

          Download print10.simple.c

          print integers 1..10 one per line
          main:                 # int main(void) {
                                # int i;  // in register $t0
          
              li    $t0, 1      # i = 1;
          
          loop:                 # loop:
              bgt  $t0, 10 end  # if (i > 10) goto end;
          
              move $a0, $t0     #   printf("%d" i);
              li   $v0, 1
              syscall
          
              li   $a0, '\n'      # printf("%c", '\n');
              li   $v0, 11
              syscall
          
              add  $t0, $t0 1   #   i++;
          
              b    loop         # goto loop;
          
          end:
              li   $v0, 0       # return 0
              jr   $ra
          

          Download print10.s

          calculate 1*1 + 2*2 + ... + 99 * 99 + 100 * 100
          #include <stdio.h>
          
          int main(void) {
              int sum = 0;
          
              for (int i = 0; i <= 100; i++) {
                  sum += i * i;
              }
          
              printf("%d\n", sum);
          
              return 0;
          }
          

          Download sum_100_squares.c

          #include <stdio.h>
          
          // sum of first 100 squares.
          
          int main(void) {
              int i, sum, t3;
          
              sum = 0;
              i = 0;
              loop:
                 if (i > 100) goto end;
                 t3 = i * i;
                 sum = sum + t3;
                 i = i + 1;
              goto loop;
          
          end:
              printf("%d", sum);
              printf("\n");
          
              return 0;
          }
          

          Download sum_100_squares.simple.c

          calculate 1*1 + 2*2 + ... + 99 * 99 + 100 * 100
          sum in $t0, i in $t1
          main:
              li  $t0, 0          # sum = 0;
              li  $t1, 0          # i = 0
          
          loop:
              bgt $t1, 100 end    # if (i > 100) goto end;
              mul $t3, $t1, $t1   # t3 = i * i;
              add $t0, $t0, $t3   # sum = sum + t3;
          
              add $t1, $t1, 1     # i = i + 1;
              b   loop
          
          end:
              move $a0, $t0      # printf("%d", sum);
              li   $v0, 1
              syscall
          
              li   $a0, '\n'      # printf("%c", '\n');
              li   $v0, 11
              syscall
          
              li   $v0, 0         # return 0
              jr   $ra
          

          Download sum_100_squares.s

          Mips Data
          #include <stdio.h>
          
          int x, y, z;
          int main(void) {
              x = 17;
              y = 25;
              z = x + y;
              printf("%d", z);
              printf("\n");
              return 0;
          }
          

          Download add_memory.c

          add 17 and 25 use variables stored in memory and print result
          main:                  #  x, y, z in $t0, $t1, $t2,
              li   $t0, 17       # x = 17;
              sw   $t0, x
          
              li   $t0, 25       # y = 25;
              sw   $t0, y
          
              lw   $t0, x
              lw   $t1, y
              add  $t2, $t1, $t0 # z = x + y
              sw   $t2, z
          
              lw   $a0, z       # printf("%d", a0);
              li   $v0, 1
              syscall
          
              li   $a0, '\n'    # printf("%c", '\n');
              li   $v0, 11
              syscall
          
              li   $v0, 0       # return 0
              jr   $ra
          
          .data
          x:  .word 0
          y:  .word 0
          z:  .word 0
          

          Download add_memory.s

          read 10 numbers into an array then print the 10 numbers
          #include <stdio.h>
          
          int numbers[10] = { 0 };
          
          int main(void) {
              int i;
          
              i = 0;
              while (i < 10) {
                  printf("Enter a number: ");
                  scanf("%d", &numbers[i]);
                  i++;
              }
              i = 0;
              while (i < 10) {
                  printf("%d\n", numbers[i]);
                  i++;
              }
              return 0;
          }
          

          Download read10.c

          read 10 numbers into an array then print the 10 numbers
          i in register $t0 registers $t1, $t2 & $t3 used to hold temporary results
          main:
          
              li $t0, 0           # i = 0
          loop0:
              bge $t0, 10, end0   # while (i < 10) {
          
              la $a0, string0     #   printf("Enter a number: ");
              li $v0, 4
              syscall
          
              li $v0, 5           #   scanf("%d", &numbers[i]);
              syscall             #
          
              mul $t1, $t0, 4     #   calculate &numbers[i]
              la $t2, numbers     #
              add $t3, $t1, $t2   #
              sw $v0, ($t3)       #   store entered number in array
          
              add $t0, $t0, 1     #   i++;
              b loop0             # }
          end0:
          
              li   $t0, 0          # i = 0
          loop1:
              bge  $t0, 10, end1   # while (i < 10) {
          
              mul  $t1, $t0, 4     #   calculate &numbers[i]
              la   $t2, numbers    #
              add  $t3, $t1, $t2   #
              lw   $a0, ($t3)      #   load numbers[i] into $a0
              li   $v0, 1          #   printf("%d", numbers[i])
              syscall
          
              li   $a0, '\n'       #   printf("%c", '\n');
              li   $v0, 11
              syscall
          
              add  $t0, $t0, 1     #   i++
              b loop1              # }
          end1:
          
              li   $v0, 0          # return 0
              jr   $ra
          
          .data
          
          numbers:                # int numbers[10];
               .word 0 0 0 0 0 0 0 0 0 0
          
          string0:
              .asciiz "Enter a number: "
          

          Download read10.s

          read 10 integers then print them in reverse order
          #include <stdio.h>
          
          int numbers[10];
          
          int main() {
              int count;
          
              count = 0;
              while (count < 10) {
                  printf("Enter a number: ");
                  scanf("%d", &numbers[count]);
                  count++;
              }
          
              printf("Reverse order:\n");
              count = 9;
              while (count >= 0) {
                  printf("%d\n", numbers[count]);
                  count--;
              }
          
              return 0;
          }
          

          Download reverse10.c

          read 10 integers then print them in reverse order
          count in register $t0 registers $t1 and $t2 used to hold temporary results
          main:
              li   $t0, 0           # count = 0
          
          read:
              bge  $t0, 10, print   # while (count < 10) {
              la   $a0, string0     # printf("Enter a number: ");
              li   $v0, 4
              syscall
          
              li   $v0, 5           #   scanf("%d", &numbers[count]);
              syscall               #
              mul  $t1, $t0, 4      #   calculate &numbers[count]
              la   $t2, numbers     #
              add  $t1, $t1, $t2    #
              sw   $v0, ($t1)       #   store entered number in array
          
              add  $t0, $t0, 1      #   count++;
              b read                # }
          
          print:
              la   $a0, string1     # printf("Reverse order:\n");
              li   $v0, 4
              syscall
              li   $t0, 9           # count = 9;
          next:
              blt  $t0, 0, end1     # while (count >= 0) {
          
              mul  $t1, $t0, 4      #   printf("%d", numbers[count])
              la   $t2, numbers     #   calculate &numbers[count]
              add  $t1, $t1, $t2    #
              lw   $a0, ($t1)       #   load numbers[count] into $a0
              li   $v0, 1
              syscall
          
              li   $a0, '\n'        #   printf("%c", '\n');
              li   $v0, 11
              syscall
          
              sub  $t0, $t0,1       #   count--;
              b next                # }
          end1:
          
              li   $v0, 0           # return 0
              jr   $ra
          
          .data
          
          numbers:                 # int numbers[10];
               .word 0 0 0 0 0 0 0 0 0 0
          
          string0:
              .asciiz "Enter a number: "
          string1:
              .asciiz "Reverse order:\n"
          

          Download reverse10.s

          #include <stdio.h>
          #include <stdint.h>
          
          int main(void) {
              uint8_t b;
              uint32_t u;
          
              u = 0x03040506;
              b = *(uint8_t *)&u;
              printf("%d\n", b); // prints 6 on a little-endian machine
          }
          

          Download endian.c

          main:
              li   $t0, 0x03040506
          
              sw   $t0, u
          
              lb   $a0, u
          
              li   $v0, 1         # printf("%d", a0);
          
              syscall
          
              li   $a0, '\n'      # printf("%c", '\n');
              li   $v0, 11
              syscall
          
          
              li   $v0, 0          # return 0
              jr   $ra
          
              .data
          u:
              .word 0
          

          Download endian.s

          #include <stdio.h>
          #include <stdint.h>
          
          int main(void) {
              uint8_t bytes[32];
              uint32_t *i = (int *)bytes[1];
              *i = 0x03040506;   // store will not be aligned on a 4-byte boundary
              printf("%d\n", bytes[1]);
          }
          

          Download unalign.c

          main:
              li $t0, 1
          
              sb $t0, a            # will succeed because no alignment needed
              sh $t0, a            # will fail a because is not aligned on 2-byte boundary
              sw $t0, a            # will fail a because is not aligned on 3-byte boundary
          
              sh $t0, b            # will succeeed because b is aligned on 2-byte boundary
              sw $t0, b            # will fail b because is not aligned on a 4-byte boundary
          
              sh $t0, c            # will succeeed because c is aligned on 2-byte boundary
              sw $t0, c            # will fail d because is not aligned on a 4-byte boundary
          
              sh $t0, d            # will succeeed because d is aligned on 2-byte boundary
              sw $t0, d            # will succeeed because d is  aligned on a 4-byte boundary
          
              sw $t0, e            # will succeeed because e is aligned on a 4-byte boundary
          
              sw $t0, f            # will succeeed because f is aligned on a 4-byte boundary
          
              jr   $ra             # return
          
              .data     # data will be aligned on a 4-byte boundary
                        # most likely on at least a 128-byte boundary
                        # but safer to just add a .align directive
              .align 2
              .space 1
          a:
              .space 1
          b:
              .space 4
          c:
              .space 2
          d:
              .space 4
              .space 1
              .align 2 # ensure e is on a 4 (2**2) byte boundary
          e:
              .space 4
              .space 1
          f:
              .word 0  # word directive automaticatically aligns on 4 byte boundary
          

          Download unalign.s

          #include <stdio.h>
          #include <stdint.h>
          #include <stdlib.h>
          
          
          int main(void) {
              double array[10];
          
              for (int i = 0; i < 10; i++) {
                  printf("&array[%d]=%p\n", i, &array[i]);
              }
          
              printf("\nexample computation for address of array element \\n\n");
          
              uint64_t a = (uint64_t)&array[0];
              printf("&array[0] + 7 * sizeof (double) = 0x%lx\n",     a + 7 * sizeof (double));
              printf("&array[0] + 7 * %lx               = 0x%lx\n", sizeof (double), a + 7 * sizeof (double));
              printf("0x%lx + 7 * %lx          = 0x%lx\n", a, sizeof (double), a + 7 * sizeof (double));
              printf("&array[7]                       = %p\n", &array[7]);
          }
          

          Download array_element_address.c

          non-portable code illustrating array indexing this relies on pointers being implemented by memory addresses which most compiled C implementations do
          #include <stdio.h>
          #include <stdint.h>
          
          uint32_t array[10] = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 };
          
          int main(void) {
              // use a typecast to assign array address to integer variable i
              uint64_t i = (uint64_t)&array;
          
              i += 7 * sizeof array[0]; // add 28 to i
          
              // use a typecast to assign  i to a pointer vaiable
              uint32_t *y = (uint32_t *)i;
          
              printf("*y = %d\n", *y); // prints 17
          
              // compare to pointer arithmetic where adding 1
              // moves to the next array element
              uint32_t *z = array;
              z += 7;
              printf("*z = %d\n", *z); // prints 17
          }
          

          Download emulating_array_indexing.c

          simple example of accessing an array element
          #include <stdio.h>
          
          int x[10];
          
          int main(void) {
              x[3] = 17;
          }
          

          Download store_array_element.c

          main:
              li   $t0, 3
              mul  $t1, $t0, 4
              la   $t1, x
              add  $t2, $t1, $t0
              li   $t3, 17
              sw   $t3, ($t2)
              # ...
          .data
          x:  .space 40
          

          Download store_array_element.s

          #include <stdio.h>
          
          #define X 3
          #define Y 4
          
          int main(void) {
              int array[X][Y];
          
              for (int x = 0; x < X; x++) {
                  for (int y = 0; y < Y; y++) {
                      array[x][y] = x + y;
                  }
              }
          
              for (int x = 0; x < X; x++) {
                  for (int y = 0; y < Y; y++) {
                      printf("%d ", array[x][y]);
                  }
                  printf("\n");
              }
          
              printf("sizeof array[2][3] = %lu\n", sizeof array[2][3]);
              printf("sizeof array[1] = %lu\n", sizeof array[1]);
              printf("sizeof array = %lu\n", sizeof array);
          
              printf("&array=%p\n", &array);
              for (int x = 0; x < X; x++) {
                  printf("&array[%d]=%p\n", x, &array[x]);
                  for (int y = 0; y < Y; y++) {
                      printf("&array[%d][%d]=%p\n", x, y, &array[x][y]);
                  }
              }
          }
          

          Download 2d_array_element_address.c

          non-portable code illustrating 2d-array indexing this relies on pointers being implemented by memory addresses which most compiled C implementations do
          #include <stdio.h>
          #include <stdint.h>
          
          
          uint32_t array[3][4] = {{10, 11, 12, 13}, {14, 15, 16, 17}, {18, 19, 20, 21}};
          
          int main(void) {
              // use a typecast to assign array address to integer variable i
              uint64_t i = (uint64_t)&array;
          
              // i += (2 * 16) + 2 * 4
              i += (2 * sizeof array[0]) + 2 * sizeof array[0][0];
          
              // use a typecast to assign  i to a pointer vaiable
              uint32_t *y = (uint32_t *)i;
          
              printf("*y = %d\n", *y); // prints 20
          }
          

          Download emulating_2d_array_indexing.c

          #include <stdio.h>
          #include <stdint.h>
          
          struct s1 {
              uint32_t   i0;
              uint32_t   i1;
              uint32_t   i2;
              uint32_t   i3;
          };
          
          struct s2 {
              uint8_t    b;
              uint64_t   l;
          };
          
          int main(void) {
              struct s1 v1;
          
              printf("&v1      = %p\n", &v1);
              printf("&(v1.i0) = %p\n", &(v1.i0));
              printf("&(v1.i1) = %p\n", &(v1.i1));
              printf("&(v1.i2) = %p\n", &(v1.i2));
              printf("&(v1.i3) = %p\n", &(v1.i3));
          
              printf("\nThis shows struct padding\n");
          
              struct s2 v2;
              printf("&v2      = %p\n", &v2);
              printf("&(v2.b)  = %p\n", &(v2.b));
              printf("&(v2.l)  = %p\n", &(v2.l));
          }
          

          Download struct_address.c

          $ dcc struct_packing.c -o struct_packing
          $ ./struct_packing
          sizeof v1 = 32
          sizeof v2 = 20
          alignment rules mean struct s1 is padded
          &(v1.c1) = 0x7ffdfc02f560
          &(v1.l1) = 0x7ffdfc02f564
          &(v1.c2) = 0x7ffdfc02f568
          &(v1.l2) = 0x7ffdfc02f56c
          struct s2 is not padded
          &(v2.c1) = 0x7ffdfc02f5a0
          &(v2.l1) = 0x7ffdfc02f5a4
          $
          

          #include <stdio.h>
          #include <stdint.h>
          #include <stdlib.h>
          
          void print_bytes(void *v, int n);
          
          struct s1 {
              uint8_t    c1;
              uint32_t   l1;
              uint8_t    c2;
              uint32_t   l2;
              uint8_t    c3;
              uint32_t   l3;
              uint8_t    c4;
              uint32_t   l4;
          };
          
          struct s2 {
              uint32_t   l1;
              uint32_t   l2;
              uint32_t   l3;
              uint32_t   l4;
              uint8_t    c1;
              uint8_t    c2;
              uint8_t    c3;
              uint8_t    c4;
          };
          
          int main(void) {
              struct s1 v1;
              struct s2 v2;
          
              printf("sizeof v1 = %lu\n", sizeof v1);
              printf("sizeof v2 = %lu\n", sizeof v2);
          
              printf("alignment rules mean struct s1 is padded\n");
          
              printf("&(v1.c1) = %p\n", &(v1.c1));
              printf("&(v1.l1) = %p\n", &(v1.l1));
              printf("&(v1.c2) = %p\n", &(v1.c2));
              printf("&(v1.l2) = %p\n", &(v1.l2));
          
              printf("struct s2 is not padded\n");
          
              printf("&(v1.l1) = %p\n", &(v1.l1));
              printf("&(v1.l2) = %p\n", &(v1.l2));
              printf("&(v1.l4) = %p\n", &(v1.l4));
              printf("&(v2.c1) = %p\n", &(v2.c1));
              printf("&(v2.c2) = %p\n", &(v2.c2));
          }
          

          Download struct_packing.c

          non-portable code illustrating access to a struct field this relies on pointers being implemented by memory addresses which most compiled C implementations do
          #include <stdio.h>
          #include <stdint.h>
          #include <stdlib.h>
          
          struct simple {
              char     c;
              uint32_t i;
              double   d;
          };
          
          struct simple s = { 'Z', 42, 3.14159 };
          
          int main(void) {
              // use a typecast to assign struct address to integer variable i
              uint64_t i = (uint64_t)&s;
          
              // 3 bytes of padding - likely but not guaranteed
              i += (sizeof s.c) + 3;
              // use a typecast to assign  i to a pointer vaiable
              uint32_t *y = (uint32_t *)i;
          
              printf("*y = %d\n", *y); // prints 42
          }
          

          Download emulating_struct_addressing.c

          Mips Functions
          simple example of returning from a function
          #include <stdio.h>
          
          void f(void);
          
          int main(void) {
              printf("calling function f\n");
              f();
              printf("back from function f\n");
              return 0;
          }
          
          void f(void) {
              printf("in function f\n");
          }
          

          Download call_return.c

          simple example of returning from a function loops because main does not save return address
          main:
              la   $a0, string0   # printf("calling function f\n");
              li   $v0, 4
              syscall
          
              jal f               # set $ra to following address
          
              la   $a0, string1   # printf("back from function f\n");
              li   $v0, 4
              syscall
          
              li   $v0, 0         # fails because $ra changes since main called
              jr   $ra            # return from function main
          
          
          f:
              la $a0, string2     # printf("in function f\n");
              li $v0, 4
              syscall
              jr $ra              # return from function f
          
          
              .data
          string0:
              .asciiz "calling function f\n"
          string1:
              .asciiz "back from function f\n"
          string2:
              .asciiz "in function f\n"
          

          Download call_return.broken.s

          simple example of placing return address on stack note stack grows down
          main:
              sub  $sp, $sp, 4    # move stack pointer down to make room
              sw   $ra, 0($sp)    # save $ra on $stack
          
              la   $a0, string0   # printf("calling function f\n");
              li   $v0, 4
              syscall
          
              jal  f              # set $ra to following address
          
              la   $a0, string1   # printf("back from function f\n");
              li   $v0, 4
              syscall
          
              lw   $ra, 0($sp)    # recover $ra from $stack
              add  $sp, $sp, 4    # move stack pointer back to what it was
          
              li   $v0, 0         # return 0 from function main
              jr   $ra            #
          
          
          f:
              la $a0, string2     # printf("in function f\n");
              li $v0, 4
              syscall
              jr $ra              # return from function f
          
          
              .data
          string0:
              .asciiz "calling function f\n"
          string1:
              .asciiz "back from function f\n"
          string2:
              .asciiz "in function f\n"
          

          Download call_return.s

          simple example of returning a value from a function
          #include <stdio.h>
          
          int answer(void);
          
          int main(void) {
              int a = answer();
              printf("%d\n", a);
              return 0;
          }
          
          int answer(void) {
              return 42;
          }
          

          Download return_answer.c

          simple example of returning a value from a function note storing of return address $ra and $a0 on stack for simplicity we are not using a frame pointer
          main:
              sub  $sp, $sp, 4    # move stack pointer down to make room
              sw   $ra, 0($sp)    # save $ra on $stack
          
              jal  answer         # call answer, return value will be in $v0
          
              move $a0, $v0       # printf("%d", a);
              li   $v0, 1
              syscall
          
              li   $a0, '\n'      # printf("%c", '\n');
              li   $v0, 11
              syscall
          
          
          
              lw   $ra, 0($sp)    # recover $ra from $stack
              add  $sp, $sp, 4    # move stack pointer back up to what it was when main called
          
              li   $v0, 0         # return 0 from function main
              jr   $ra            #
          
          answer:
              li $v0, 42          #
              jr $ra              # return from answer
          

          Download return_answer.s

          example of function calls
          #include <stdio.h>
          
          int sum_product(int a, int b);
          int product(int x, int y);
          
          int main(void) {
              int z = sum_product(10, 12);
              printf("%d\n", z);
              return 0;
          }
          
          int sum_product(int a, int b) {
              int p = product(6, 7);
              return p + a + b;
          }
          
          int product(int x, int y) {
              return x * y;
          }
          

          Download more_calls.c

          example of function calls note storing of return address $a0, $a1 and $ra on stack for simplicity we are not using a frame pointer
          main:
              sub  $sp, $sp, 4    # move stack pointer down to make room
              sw   $ra, 0($sp)    # save $ra on $stack
          
              li   $a0, 6         # sum_product(10, 12);
              li   $a1, 7
              jal  product
          
              move $a0, $v0       # printf("%d", z);
              li   $v0, 1
              syscall
          
              li   $a0, '\n'      # printf("%c", '\n');
              li   $v0, 11
              syscall
          
              lw   $ra, 0($sp)    # recover $ra from $stack
              add  $sp, $sp, 4    # move stack pointer back up to what it was when main called
          
              li   $v0, 0         # return 0 from function main
              jr   $ra            # return from function main
          
          
          
          sum_product:
              sub  $sp, $sp, 12   # move stack pointer down to make room
              sw   $ra, 8($sp)    # save $ra on $stack
              sw   $a1, 4($sp)    # save $a1 on $stack
              sw   $a0, 0($sp)    # save $a0 on $stack
          
              li   $a0, 6         # product(6, 7);
              li   $a1, 7
              jal  product
          
              lw   $a1, 4($sp)    # restore $a1 from $stack
              lw   $a0, 0($sp)    # restore $a0 from $stack
          
              add  $v0, $v0, $a0  # add a and b to value returned in $v0
              add  $v0, $v0, $a1  # and put result in $v0 to be returned
          
              lw   $ra, 8($sp)    # restore $ra from $stack
              add  $sp, $sp, 12   # move stack pointer back up to what it was when main called
          
              jr   $ra            # return from sum_product
          
          
          product:                # product doesn't call other functions
                                  # so it doesn't need to save any registers
              mul  $v0, $a0, $a1  # return argument * argument 2
              jr   $ra            #
          

          Download more_calls.s

          recursive function which prints first 20 powers of two in reverse
          #include <stdio.h>
          
          void two(int i);
          
          int main(void) {
              two(1);
          }
          
          void two(int i) {
              if (i < 1000000) {
                  two(2 * i);
              }
              printf("%d\n", i);
          }
          

          Download two_powerful.c

          simple example of placing return address $ra and $a0 on stack for simplicity we are not using a frame pointer
          main:
              sub $sp, $sp, 4     # move stack pointer down to make room
              sw $ra, 0($sp)      # save $ra on $stack
          
              li $a0, 1           # two(1);
              jal two
          
          
              lw $ra, 0($sp)      # recover $ra from $stack
              add $sp, $sp, 4     # move stack pointer back up to what it was when main called
          
              jr $ra              # return from function main
          
          
          
          two:
              sub $sp, $sp, 8     # move stack pointer down to make room
              sw $ra, 4($sp)      # save $ra on $stack
              sw $a0, 0($sp)      # save $a0 on $stack
          
              bge $a0, 1000000, print
              mul $a0, $a0, 2     # restore $a0 from $stack
              jal two
          print:
          
              lw $a0, 0($sp)      # restore $a0 from $stack
              li $v0, 1           # printf("%d");
              syscall
          
              li $a0, '\n'        # printf("%c", '\n');
              li $v0, 11
              syscall
          
              lw $ra, 4($sp)      # restore $ra from $stack
              add $sp, $sp, 8     # move stack pointer back up to what it was when main called
          
              jr $ra              # return from two
          

          Download two_powerful.s

          calculate the length of a string using a strlen like function
          #include <stdio.h>
          
          int my_strlen(char *s);
          
          int main(void) {
              int i = my_strlen("Hello Andrew");
              printf("%d\n", i);
              return 0;
          }
          
          int my_strlen(char *s) {
              int length = 0;
              while (s[length] != 0) {
                  length++;
              }
              return length;
          }
          

          Download strlen_array.c

          calculate the length of a string using a strlen like function
          #include <stdio.h>
          
          int my_strlen(char *s);
          
          int main(void) {
              int i = my_strlen("Hello Andrew");
              printf("%d\n", i);
              return 0;
          }
          
          int my_strlen(char *s) {
              int length = 0;
          loop:
              if (s[length] == 0) goto end;
                 length++;
              goto loop;
          end:
              return length;
          }
          

          Download strlen_array.goto.c

          calculate the length of a string using a strlen like function
          main:
              sub  $sp, $sp, 4    # move stack pointer down to make room
              sw   $ra, 0($sp)    # save $ra on $stack
          
              la   $a0, string    # my_strlen("Hello Andrew");
              jal  my_strlen
          
              move $a0, $v0       # printf("%d", i);
              li   $v0, 1
              syscall
          
              li   $a0, '\n'      # printf("%c", '\n');
              li   $v0, 11
              syscall
          
              lw   $ra, 0($sp)    # recover $ra from $stack
              add  $sp, $sp, 4    # move stack pointer back up to what it was when main called
          
              li   $v0, 0         # return 0 from function main
              jr   $ra            #
          
          
          my_strlen:              # length in t0, s in $a0
              li   $t0, 0
          loop:                   # while (s[length] != 0) {
              add  $t1, $a0, $t0  #   calculate &s[length]
              lb   $t2, 0($t1)    #   load s[length] into $t2
              beq  $t2, 0, end    #
              add  $t0, $t0, 1    #   length++;
              b    loop           # }
          end:
              move $v0, $t0       # return length
              jr   $ra
          
              .data
          string:
              .asciiz "Hello Andrew"
          

          Download strlen_array.s

          #include <stdio.h>
          
          int my_strlen(char *s);
          
          int main(void) {
              int i = my_strlen("Hello Andrew");
              printf("%d\n", i);
              return 0;
          }
          
          int my_strlen(char *s) {
              int length = 0;
              while (*s != 0) {
                  length++;
                  s++;
              }
              return length;
          }
          

          Download strlen_pointer.c

          simple example of placing return address $ra and $a0 on stack for simplicity we are not using a frame pointer
          main:
              sub $sp, $sp, 4     # move stack pointer down to make room
              sw $ra, 0($sp)      # save $ra on $stack
          
              la $a0, string      # my_strlen("Hello Andrew");
              jal my_strlen
          
              move $a0, $v0       # printf("%d", i);
              li $v0, 1
              syscall
          
              li $a0, '\n'        # printf("%c", '\n');
              li $v0, 11
              syscall
          
              lw $ra, 0($sp)      # recover $ra from $stack
              add $sp, $sp, 4     # move stack pointer back up to what it was when main called
          
              jr $ra              # return from function main
          
          my_strlen:              # length in t0, s in $a0
              li $t0, 0
          loop:                   #
              lb $t1, 0($a0)      # load *s into $t1
              beq $t1, 0, end     #
              add $t0, $t0, 1     # length++
              add $a0, $a0, 1     # s++
              b loop              #
          end:
              move $v0, $t0       # return length
              jr $ra
          
              .data
          string:
              .asciiz "Hello Andrew"
          

          Download strlen_pointer.s

          i in register $t0 registers $t1 and $t2 used to hold temporary results
          main:
              sub  $tp, $tp, 40    # move stack pointer down to make room
                                   # to store array numbers on stack
              li   $t0, 0          # i = 0
          
          loop0:
              bge  $t0, 10, end0   # while (i < 10) {
              la   $a0, string0    #  printf("Enter a number: ");
              li   $v0, 4
              syscall
          
              li   $v0, 5         #  scanf("%d", &numbers[i]);
              syscall             #
          
              mul  $t1, $t0, 4    #  calculate &numbers[i]
              add  $t1, $t1, $tp  #
              sw   $v0, ($t1)     #  store entered number in array
          
              add  $t0, $t0, 1    #  i++;
              b    loop0          # }
          end0:
          
              li   $t0, 0         # i = 0
          loop1:
              bge  $t0, 10, end1  # while (i < 10) {
          
              mul  $t1, $t0, 4
              add  $t1, $t1, $t0  #   calculate &numbers[i]
              lw   $a0, ($t1)     #   load numbers[i] into $a0
              li   $v0, 1         #   printf("%d", numbers[i])
              syscall
          
              li   $a0, '\n'      #   printf("%c", '\n');
              li   $v0, 11
              syscall
          
              add  $t0, $t0, 1    #   i++
              b    loop1          # }
          end1:
          
              add  $tp, $tp, 40   # move stack pointer back up to what it was when main called
              li   $v0, 0         # return 0 from function main
              jr   $ra            #
          
          .data
          string0:
              .asciiz "Enter a number: "
          

          Download read10_stack.s

          example of function where frame pointer useful because stack grows during function execution
          #include <stdio.h>
          
          void f(int a) {
              int length;
              scanf("%d", &length);
              int array[length];
              // ... more code ...
              printf("%d\n", a);
          }
          

          Download frame_pointer.c

          example stack growing during function execution breaking the function return
          f:
              sub  $sp, $sp, 8     # move stack pointer down to make room
              sw   $ra, 4($sp)     # save $ra on $stack
              sw   $a0, 0($sp)     # save $a0 on $stack
          
              li   $v0, 5          # scanf("%d", &length);
              syscall
          
              mul  $v0, $v0, 4     # calculate array size
              sub  $sp, $sp, $v0   # move stack_pointer down to hold array
          
              # ...
          
                                  # breaks because stack pointer moved down to hold array
                                  # so we won't restore the correct value
              lw   $ra, 4($sp)    # restore $ra from $stack
              add  $sp, $sp, 8    # move stack pointer back up to what it was when main called
          
              jr   $ra            # return from f
          

          Download frame_pointer.broken.s

          using a frame pointer to handle stack growing during function execution
          f:
              sub  $sp, $sp, 12   # move stack pointer down to make room
              sw   $fp, 8($sp)    # save $fp on $stack
              sw   $ra, 4($sp)    # save $ra on $stack
              sw   $a0, 0($sp)    # save $a0 on $stack
              add  $fp, $sp, 12   # have frame pointer at start of stack frame
          
              li   $v0, 5         # scanf("%d", &length);
              syscall
          
              mul  $v0, $v0, 4    # calculate array size
              sub  $sp, $sp, $v0  # move stack_pointer down to hold array
          
              # ... more code ...
          
              lw   $ra, -8($fp)    # restore $ra from stack
              move $sp, $fp       # move stack pointer backup  to what it was when main called
              la   $fp, -4($fp)    # restore $fp from $stack
              jr   $ra            # return
          

          Download frame_pointer.s

          #include <stdio.h>
          #include <stdint.h>
          
          /*
          $ clang stack_inspect.c
          $ a.out
           0: Address 0x7ffe1766c304 contains 3           <- a[0]
           1: Address 0x7ffe1766c308 contains 5           <- x
           2: Address 0x7ffe1766c30c contains 2a          <- b
           3: Address 0x7ffe1766c310 contains 1766c330    <- f  frame pointer (64 bit)
           4: Address 0x7ffe1766c314 contains 7ffe
           5: Address 0x7ffe1766c318 contains 40120c      <- f return address
           6: Address 0x7ffe1766c31c contains 0
           7: Address 0x7ffe1766c320 contains 22
           8: Address 0x7ffe1766c324 contains 25
           9: Address 0x7ffe1766c328 contains 9           <- a
          10: Address 0x7ffe1766c32c contains 0
          11: Address 0x7ffe1766c330 contains 401220      <- main return address
          12: Address 0x7ffe1766c334 contains 0
          13: Address 0x7ffe1766c338 contains c7aca09b    <- main frame pointer (64 bit)
          14: Address 0x7ffe1766c33c contains 7ff3
          15: Address 0x7ffe1766c340 contains 0
          */
          
          void f(int b) {
              int x = 5;
              uint32_t a[1] = { 3 };
          
              for (int i = 0; i < 16; i++)
                  printf("%2d: Address %p contains %x\n", i, &a[i], a[0 + i]);
          }
          
          int main(void) {
              int a = 9;
              printf("function main is at address %p\n", &main);
              printf("function f is at address %p\n", &f);
              f(42);
              return 0;
          }
          

          Download stack_inspect.c



          Run at CSE like this
          $ gcc-7 invalid0.c -o invalid0 $ ./invalid0 42 42 42 77 77 77 77 77 77 77


          #include <stdio.h>
          #include <stdlib.h>
          
          int main(void) {
              int a[10];
              int b[10];
              printf("a[0] is at address %p\n", &a[0]);
              printf("a[9] is at address %p\n", &a[9]);
              printf("b[0] is at address %p\n", &b[0]);
              printf("b[9] is at address %p\n", &b[9]);
          
              for (int i = 0; i < 10; i++) {
                  a[i] = 77;
              }
          
              // loop writes to b[10] .. b[12] which don't exist -
              // with gcc 7.3 on x86_64/Linux
              // b[12] is stored where a[0] is stored
              // with gcc 7 on CSE lab machines
              // b[10] is stored where a[0] is stored
          
              for (int i = 0; i <= 12; i++) {
                  b[i] = 42;
              }
          
              // prints 42 77 77 77 77 77 77 77 77 77 on x86_64/Linux
              // prints 42 42 42 77 77 77 77 77 77 77 at CSE
              for (int i = 0; i < 10; i++) {
                  printf("%d ", a[i]);
              }
              printf("\n");
          
              return 0;
          }
          

          Download invalid0.c



          Run at CSE like this
          $ gcc-7 invalid1.c -o invalid1 $ ./invalid1 42 42 42 77 77 77 77 77 77 77


          #include <stdio.h>
          #include <stdlib.h>
          
          int main(void) {
              int i;
              int a[10];
              printf("i is at address %p\n", &i);
              printf("a[0] is at address %p\n", &a[0]);
              printf("a[9] is at address %p\n", &a[9]);
              printf("a[10] would be stored at address %p\n", &a[10]);
          
              // loop writes to a[10] .. a[11] which don't exist -
              // but with gcc 7 on x86_64/Linux
              // i would be stored where a[11] is stored
          
              for (i = 0; i <= 11; i++) {
                  a[i] = 0;
              }
          
              return 0;
          }
          

          Download invalid1.c



          Run at CSE like this
          $ gcc-7 invalid2.c -o invalid2 $ ./invalid2 answer=42


          #include <stdio.h>
          
          void f(int x);
          
          int main(void) {
              int answer = 36;
              printf("answer is stored at address %p\n", &answer);
          
              f(5);
              printf("answer=%d\n", answer); // prints 42 not 36
          
              return 0;
          }
          
          void f(int x) {
              int a[10];
          
              // a[19] doesn't exist
              // with gcc-7 at CSE variable answer in main
              // happens to be where a[19] would be
          
              printf("a[19] would be stored at address %p\n", &a[19]);
          
              a[19] = 42;
          }
          

          Download invalid2.c



          Run at CSE like this
          $ gcc-7 invalid3.c -o invalid3 $ ./invalid3
          I will never be printed. argc was 1 $
          #include <stdio.h>
          #include <stdlib.h>
          
          void f(void);
          
          void f(void);
          
          int main(int argc, char *argv[]) {
              f();
          
              if (argc > 0) {
                  printf("I will always be printed.\n");
              }
          
              if (argc <= 0) {
                  printf("I will never be printed.\n");
              }
          
              printf("argc was %d\n", argc);
              return 0;
          }
          
          void f() {
              int a[10];
          
              // function f has it return address on the stack
              // the call of function f from main should return to
              // the next statement which is:  if (argc > 0)
              //
              // with gcc7 at CSE  f's return address is stored where a[14] would be
              //
              // so changing a[14] changes where the function returns
              //
              // adding 24 to a[11] happens to cause it to return several statements later
              // at the printf("I will never be printed.\n");
          
              a[14] += 24;
          }
          

          Download invalid3.c



          Run at CSE like this
          $ gcc-7 invalid4.c -o invalid4 $ ./invalid4 authenticated is at address 0xff94bf44 password is at address 0xff94bf3c
          Enter your password: 123456789
          Welcome. You are authorized. $
          #include <stdio.h>
          #include <string.h>
          
          int main(int argc, char *argv[]) {
              int authenticated = 0;
              char password[8];
          
              printf("authenticated is at address %p\n", &authenticated);
              printf("password[8] would be at address %p\n", &password[8]);
          
              printf("Enter your password: ");
              int i = 0;
              int ch = getchar();
              while (ch != '\n' && ch != EOF) {
                  password[i] = ch;
                  ch = getchar();
                  i = i + 1;
              }
              password[i] = '\0';
          
              if (strcmp(password, "secret") == 0) {
                  authenticated = 1;
              }
          
              // a password longer than 8 characters will overflow the array password
              // the variable authenticated is at the address where
              // where password[8] would be and gets overwritten
              //
              // This allows access without knowing the correct password
          
              if (authenticated) {
                  printf("Welcome. You are authorized.\n");
              } else {
                  printf("Welcome. You are unauthorized.  Your death will now be implemented.\n");
                  printf("Welcome. You will experience a tingling sensation and then death. \n");
                  printf("Remain calm while your life is extracted.\n");
              }
          
              return 0;
          }
          

          Download invalid4.c

          Files
          hello world implemented with direct syscall
          #include <unistd.h>
          
          int main(void) {
              char bytes[16] = "Hello, Andrew!\n";
          
              // argument 1 to syscall is  system call number, 1 == write
              // remaining arguments are specific to each system call
          
              // write system call takes 3 arguments:
              //   1) file descriptor, 1 == stdout
              //   2) memory address of first byte to write
              //   3) number of bytes to write
          
              syscall(1, 1, bytes, 15); // prints Hello, Andrew! on stdout
          
              return 0;
          }
          

          Download hello_syscalls.c

          copy stdin to stdout implemented with system calls
          #include <unistd.h>
          
          int main(void) {
              while (1) {
                  char bytes[4096];
          
                  // system call number 0 == read
                  // read system call takes 3 arguments:
                  //   1) file descriptor, 1 == stdin
                  //   2) memory address to put bytes read
                  //   3) maximum number of bytes read
                  // returns number of bytes actually read
          
                  long bytes_read = syscall(0, 0, bytes, 4096);
          
                  if (bytes_read <= 0) {
                      break;
                  }
          
                  syscall(1, 1, bytes, bytes_read); // prints bytes to stdout
              }
          
              return 0;
          }
          

          Download cat_syscalls.c

          cp <file1> <file2> implemented with syscalls and *zero* error handling
          #include <unistd.h>
          
          int main(int argc, char *argv[]) {
              // system call number 2 == open
              // open system call takes 3 arguments:
              //   1) address of zero-terminated string containing pathname of file to open
              //   2) bitmap indicating whether to write, read, ... file
              //      0x41 == write to file creating if necessary
              //   3) permissions if file will be newly created
              //      0644 == readable to everyone, writeable by owner
          
              long read_file_descriptor = syscall(2, argv[1], 0, 0);
              long write_file_descriptor = syscall(2, argv[2], 0x41, 0644);
          
              while (1) {
                  char bytes[4096];
                  long bytes_read = syscall(0, read_file_descriptor, bytes, 4096);
                  if (bytes_read <= 0) {
                      break;
                  }
                  syscall(1, write_file_descriptor, bytes, bytes_read);
              }
          
              return 0;
          }
          

          Download cp_syscalls.c

          hello world implemented with libc
          #include <unistd.h>
          
          int main(void) {
              char bytes[16] = "Hello, Andrew!\n";
          
              // write takes 3 arguments:
              //   1) file descriptor, 1 == stdout
              //   2) memory address of first byte to write
              //   3) number of bytes to write
          
              write(1, bytes, 15); // prints Hello, Andrew! on stdout
          
              return 0;
          }
          

          Download hello_libc.c

          copy stdin to stdout implemented with libc
          #include <unistd.h>
          
          int main(void) {
              while (1) {
                  char bytes[4096];
          
                  // system call number 0 == read
                  // read system call takes 3 arguments:
                  //   1) file descriptor, 1 == stdin
                  //   2) memory address to put bytes read
                  //   3) maximum number of bytes read
                  // returns number of bytes actually read
          
                  ssize_t bytes_read = read(0, bytes, 4096);
          
                  if (bytes_read <= 0) {
                      break;
                  }
          
                  write(1, bytes, bytes_read); // prints bytes to stdout
              }
          
              return 0;
          }
          

          Download cat_libc.c

          cp <file1> <file2> implemented with libc and *zero* error handling
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          
          int main(int argc, char *argv[]) {
              // open takes 3 arguments:
              //   1) address of zero-terminated string containing pathname of file to open
              //   2) bitmap indicating whether to write, read, ... file
              //   3) permissions if file will be newly created
              //      0644 == readable to everyone, writeable by owner
          
              int read_file_descriptor = open(argv[1], O_RDONLY);
              int write_file_descriptor = open(argv[2], O_WRONLY | O_CREAT, 0644);
          
              while (1) {
                  char bytes[4096];
                  ssize_t bytes_read = read(read_file_descriptor, bytes, 4096);
                  if (bytes_read <= 0) {
                      break;
                  }
                  write(write_file_descriptor, bytes, bytes_read);
              }
          
              return 0;
          }
          

          Download cp_libc.c

          hello world implemented with fputc
          #include <stdio.h>
          
          int main(void) {
              char bytes[16] = "Hello, Andrew!\n";
          
              for (int i = 0; i < 15; i++) {
                  fputc(bytes[i], stdout);
              }
          
              // or as we know bytes is null-terminated: bytes[15] == '\0'
          
              for (int i = 0; bytes[i] != '\0'; i++) {
                  fputc(bytes[i], stdout);
              }
          
              // or if you prefer pointers
          
              for (char *p = &bytes[0]; *p != '\0'; p++) {
                  fputc(*p, stdout);
              }
          
              return 0;
          }
          

          Download hello_fputc.c

          hello world implemented with fputs
          #include <stdio.h>
          
          int main(void) {
              char bytes[] = "Hello, Andrew!\n";
          
              fputs(bytes, stdout); // relies on bytes being nul-terminated
          
              return 0;
          }
          

          Download hello_fputs.c

          hello world implemented with fwrite
          #include <stdio.h>
          
          int main(void) {
              char bytes[] = "Hello, Andrew!\n";
          
              fwrite(bytes, 1, 15, stdout); // prints Hello, Andrew! on stdout
          
              return 0;
          }
          

          Download hello_fwrite.c

          copy stdin to stdout implemented with fgetc
          #include <stdio.h>
          
          int main(void) {
              // c can not be char (common bug)
              // fgetc returns 0..255 and EOF (usually -1)
              int c;
          
              // return  bytes from the stream (stdin) one at a time
              while ((c = fgetc(stdin)) != EOF) {
                  fputc(c, stdout); // write the byte to standard output
              }
          
              return 0;
          }
          

          Download cat_fgetc.c

          copy stdin to stdout implemented with fgets
          #include <stdio.h>
          
          int main(void) {
              // return  bytes from the stream (stdin) line at a time
              // BUFSIZ is defined in stdio.h - its an efficient value to use
              // but any value would work
          
              // NOTE: fgets returns a null-terminated string
              //       in other words a 0 byte marks the end of the bytes read
          
              // so fgets can not be used to read data containing bytes which are 0
              // also fputs takes a null-terminated string so it can not be used to write bytes which are 0
              // in other word you can't use fget/fputs for binary data e.g. jpgs
          
              char line[BUFSIZ];
              while (fgets(line, BUFSIZ, stdin) != NULL) {
                  fputs(line, stdout);
              }
          
              return 0;
          }
          

          Download cat_fgets.c

          copy stdin to stdout implemented with fwrite
          #include <stdio.h>
          
          int main(void) {
              while (1) {
                  char bytes[4096];
          
                  // system call number 0 == read
                  // read system call takes 3 arguments:
                  //   1) file descriptor, 1 == stdin
                  //   2) memory address to put bytes read
                  //   3) maximum number of bytes read
                  // returns number of bytes actually read
          
                  ssize_t bytes_read = fread(bytes, 1, 4096, stdin);
          
                  if (bytes_read <= 0) {
                      break;
                  }
          
                  fwrite(bytes, 1, bytes_read, stdout); // prints bytes to stdout
              }
          
              return 0;
          }
          

          Download cat_fwrite.c

          cp <file1> <file2> implemented with fgetc
          #include <stdio.h>
          
          int main(int argc, char *argv[]) {
              if (argc != 3) {
                  fprintf(stderr, "Usage: %s <source file> <destination file>\n", argv[0]);
                  return 1;
              }
          
              FILE *input_stream = fopen(argv[1], "rb");
              if (input_stream == NULL) {
                  perror(argv[1]);  // prints why the open failed
                  return 1;
              }
          
              FILE *output_stream = fopen(argv[2], "wb");
              if (output_stream == NULL) {
                  perror(argv[2]);
                  return 1;
              }
          
              int c; // not char!
              while ((c = fgetc(input_stream)) != EOF) {
                  fputc(c, output_stream);
              }
          
              // close occurs automatically on exit
              // so these lines not nee
              fclose(input_stream);
              fclose(output_stream);
          
              return 0;
          }
          

          Download cp_fgetc.c

          cp <file1> <file2> implemented with libc and *zero* error handling
          #include <stdio.h>
          
          int main(int argc, char *argv[]) {
              // open takes 3 arguments:
              //   1) address of zero-terminated string containing pathname of file to open
              //   2) bitmap indicating whether to write, read, ... file
              //   3) permissions if file will be newly created
              //      0644 == readable to everyone, writeable by owner
          
              // b = binary mode - not needed on Linux, OSX (POSIX) systems
              //                 - needed on Windows
          
              FILE *read_stream = fopen(argv[1], "rb");
              FILE *write_stream = fopen(argv[2], "wb");
          
              // this will be slightly faster than an a fgetc/fputc loop
              while (1) {
                  char bytes[BUFSIZ];
                  size_t bytes_read = fread(bytes, 1, 4096, read_stream);
                  if (bytes_read <= 0) {
                      break;
                  }
                  fwrite(bytes, 1, bytes_read, write_stream);
              }
          
              return 0;
          }
          

          Download cp_fwrite.c


          Simple example of file creation creates file "hello.txt" containing 1 line ("Hello, Andrew!\n")
          #include <stdio.h>
          #include <stdlib.h>
          
          int main(int argc, char *argv[]) {
              FILE *output_stream = fopen("hello.txt", "w");
              if (output_stream == NULL) {
                  perror("hello.txt");
                  return 1;
              }
          
              fprintf(output_stream, "Hello, Andrew!\n");
          
              fclose(output_stream);
          
              return 0;
          }
          

          Download create_file_fopen.c

          $ dcc create_append_truncate_fopen.c
          $ ./a.out
          open("hello.txt", "w")           -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:11 hello.txt
          fputs("Hello, Andrew!\n")        -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:11 hello.txt
          fclose                           -> -rw-r--r-- 1 andrewt andrewt 15 Oct 22 19:11 hello.txt
          fopen("hello.txt", "a")          -> -rw-r--r-- 1 andrewt andrewt 15 Oct 22 19:11 hello.txt
          fputs("Hello again, Andrew!\n")  -> -rw-r--r-- 1 andrewt andrewt 15 Oct 22 19:11 hello.txt
          fflush                           -> -rw-r--r-- 1 andrewt andrewt 36 Oct 22 19:11 hello.txt
          open("hello.txt", "w")           -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:11 hello.txt
          fputs("Good Bye Andrew!\n")      -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:11 hello.txt
          assa:files% ./a.out
          open("hello.txt", "w")           -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:12 hello.txt
          fputs("Hello, Andrew!\n")        -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:12 hello.txt
          fclose                           -> -rw-r--r-- 1 andrewt andrewt 15 Oct 22 19:12 hello.txt
          fopen("hello.txt", "a")          -> -rw-r--r-- 1 andrewt andrewt 15 Oct 22 19:12 hello.txt
          fputs("Hello again, Andrew!\n")  -> -rw-r--r-- 1 andrewt andrewt 15 Oct 22 19:12 hello.txt
          fflush                           -> -rw-r--r-- 1 andrewt andrewt 36 Oct 22 19:12 hello.txt
          open("hello.txt", "w")           -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:12 hello.txt
          fputs("Good Bye Andrew!\n")      -> -rw-r--r-- 1 andrewt andrewt 0 Oct 22 19:12 hello.txt
          $ ls -l hello.txt
          -rw-r--r-- 1 andrewt andrewt 17 Oct 22 19:12 hello.txt
          $ cat hello.txt
          
          Good Bye Andrew! $

          #include <stdio.h>
          #include <stdlib.h>
          
          void show_file_state(char *message);
          
          int main(int argc, char *argv[]) {
              FILE *output_stream1 = fopen("hello.txt", "w"); // no error checking
          
              // hello.txt will be created if it doesn't exist already
              // if hello.txt previous existed it will now contain 0 bytes
          
              show_file_state("open(\"hello.txt\", \"w\")");
          
              fputs("Hello, Andrew!\n", output_stream1);
          
              // the 15 bytes in "Hello, Andrew!\n" are buffered by the stdio library
              // they haven't been written to hello.txt
              // so it will still contain 0 bytes
          
              show_file_state("fputs(\"Hello, Andrew!\\n\")");
          
              fclose(output_stream1);
          
              // The fclose will flush the buffered bytes to hello.txt
              // hello.txt will now contain 15 bytes
          
              show_file_state("fclose()");
          
              FILE *output_stream2 = fopen("hello.txt", "a"); // no error checking
          
              // because "a" was specified hello.txt will not be changed
              // it will still contain 15 bytes
          
              show_file_state("fopen(\"hello.txt\", \"a\")");
          
              fputs("Hello again, Andrew!\n", output_stream2);
          
              // the 21 bytes in "Hello again, Andrew!\n" are buffered by the stdio library
              // they haven't been written to hello.txt
              // so it will still contain 15 bytes
          
              show_file_state("fputs(\"Hello again, Andrew!\\n\")");
          
              fflush(output_stream2);
          
              // The fflush will flush ahe buffered bytes to hello.txt
              // hello.txt will now contain 36 bytes
          
              show_file_state("fflush()");
          
              FILE *output_stream3 = fopen("hello.txt", "w"); // no error checking
          
              // because "w" was specified hello.txt will be truncated to zero length
              // hello.txt will now contain 0 bytes
          
              show_file_state("open(\"hello.txt\", \"w\")");
          
              fputs("Good Bye Andrew!\n", output_stream3);
          
              // the 17 bytes in "Good Bye Andrew!\" are buffered by the stdio library
              // they haven't been written to hello.txt
              // so it will still contain 0 bytes
          
              show_file_state("fputs(\"Good Bye Andrew!\\n\")");
          
              // if exit is called or main returns stdio flushes all stream
              // this will leave hello.txt with 17 bytes
              // but if a program terminates abnormally this doesn't happen
          
              return 0;
          }
          
          void show_file_state(char *message) {
              printf("%-32s -> ", message);
              fflush(stdout);
              system("ls -l hello.txt");
          }
          

          Download create_append_truncate_fopen.c

          simple re-implementation of stdio functions fopen, fgetc, fputc, fclose no buffering *zero* error handling for clarity
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          #include <stdint.h>
          #include <stdlib.h>
          #include <assert.h>
          #include <stdio.h>
          
          #define MY_EOF -1
          
          // struct to hold data for a stream
          typedef struct my_file {
              int fd;
          } my_file_t;
          
          my_file_t *my_fopen(char *file, char *mode) {
              int fd = -1;
              if (mode[0] == 'r') {
                  fd = open(file, O_RDONLY);
              } else if (mode[0] == 'w') {
                  fd = open(file, O_WRONLY | O_CREAT, 0666);
              } else if (mode[0] == 'a') {
                  fd = open(file, O_WRONLY | O_APPEND);
              }
          
              if (fd == -1) {
                  return NULL;
              }
          
              my_file_t *f = malloc(sizeof *f);
              f->fd = fd;
              return f;
          }
          
          int my_fgetc(my_file_t *f) {
              uint8_t byte;
              int bytes_read = read(f->fd, &byte, 1);
              if (bytes_read == 1) {
                  return byte;
              } else {
                  return MY_EOF;
              }
          }
          
          int my_fputc(int c, my_file_t *f) {
              uint8_t byte = c;
              if (write(f->fd, &byte, 1) == 1) {
                  return byte;
              } else {
                  return MY_EOF;
              }
          }
          
          int my_fclose(my_file_t *f) {
              int result = close(f->fd);
              free(f);
              return result;
          }
          
          int main(int argc, char *argv[]) {
              my_file_t *input_stream = my_fopen(argv[1], "r");
              if (input_stream == NULL) {
                  perror(argv[1]);
                  return 1;
              }
          
              my_file_t *output_stream = my_fopen(argv[2], "w");
              if (output_stream == NULL) {
                  perror(argv[2]);
                  return 1;
              }
          
              int c;
              while ((c = my_fgetc(input_stream)) != MY_EOF) {
                  my_fputc(c, output_stream);
              }
          
              return 0;
          }
          

          Download myio_unbuffered.c

          simple re-implementation of stdio functions fopen, fgetc, fputc, fclose input buffering *zero* error handling for clarity
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          #include <stdint.h>
          #include <stdlib.h>
          #include <assert.h>
          #include <stdio.h>
          
          // how equivalents for  EOF & BUFSIZ from stdio.h
          #define MY_EOF -1
          #define MY_BUFSIZ 512
          
          // struct to hold data for a stream
          typedef struct my_file {
              int     fd;
              int     n_buffered_bytes;
              int     next_byte;
              uint8_t buffer[MY_BUFSIZ];
          } my_file_t;
          
          my_file_t *my_fopen(char *file, char *mode) {
              int fd = -1;
              if (mode[0] == 'r') {
                  fd = open(file, O_RDONLY);
              } else if (mode[0] == 'w') {
                  fd = open(file, O_WRONLY | O_CREAT, 0666);
              } else if (mode[0] == 'a') {
                  fd = open(file, O_WRONLY | O_APPEND);
              }
          
              if (fd == -1) {
                  return NULL;
              }
          
              my_file_t *f = malloc(sizeof *f);
              f->fd = fd;
              f->next_byte = 0;
              f->n_buffered_bytes = 0;
              return f;
          }
          
          int my_fgetc(my_file_t *f) {
              if (f->next_byte == f->n_buffered_bytes) {
                  // buffer is empty so fill it with a read
                  int bytes_read = read(f->fd, f->buffer, sizeof f->buffer);
                  if (bytes_read <= 0) {
                      return MY_EOF;
                  }
                  f->n_buffered_bytes = bytes_read;
                  f->next_byte = 0;
              }
          
              // return 1 byte from the buffer
              int byte = f->buffer[f->next_byte];
              f->next_byte++;
              return byte;
          }
          
          int my_fputc(int c, my_file_t *f) {
              uint8_t byte = c;
              if (write(f->fd, &byte, 1) == 1) {
                  return byte;
              } else {
                  return MY_EOF;
              }
          }
          
          int my_fclose(my_file_t *f) {
              int result = close(f->fd);
              free(f);
              return result;
          }
          
          int main(int argc, char *argv[]) {
              my_file_t *input_stream = my_fopen(argv[1], "r");
              if (input_stream == NULL) {
                  perror(argv[1]);
                  return 1;
              }
          
              my_file_t *output_stream = my_fopen(argv[2], "w");
              if (output_stream == NULL) {
                  perror(argv[2]);
                  return 1;
              }
          
              int c;
              while ((c = my_fgetc(input_stream)) != MY_EOF) {
                  my_fputc(c, output_stream);
              }
          
              my_fclose(input_stream);
              my_fclose(output_stream);
          
              return 0;
          }
          

          Download myio_input_buffered.c

          simple re-implementation of stdio functions fopen, fgetc, fputc, fclose *zero* error handling for clarity
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          #include <stdint.h>
          #include <stdlib.h>
          #include <stdio.h>
          
          // how equivalents for  EOF & BUFSIZ from stdio.h
          #define MY_EOF -1
          #define MY_BUFSIZ 512
          
          // struct to hold data for a stream
          typedef struct my_file {
              int     fd;
              int     is_output_stream;
              int     n_buffered_bytes;
              int     next_byte;
              uint8_t buffer[MY_BUFSIZ];
          } my_file_t;
          
          my_file_t *my_fopen(char *file, char *mode) {
              int fd = -1;
              if (mode[0] == 'r') {
                  fd = open(file, O_RDONLY);
              } else if (mode[0] == 'w') {
                  fd = open(file, O_WRONLY | O_CREAT, 0666);
              } else if (mode[0] == 'a') {
                  fd = open(file, O_WRONLY | O_APPEND);
              }
          
              if (fd == -1) {
                  return NULL;
              }
          
              my_file_t *f = malloc(sizeof *f);
              f->fd = fd;
              f->is_output_stream = mode[0] != 'r';
              f->next_byte = 0;
              f->n_buffered_bytes = 0;
              return f;
          }
          
          int my_fgetc(my_file_t *f) {
              if (f->next_byte == f->n_buffered_bytes) {
                  // buffer is empty so fill it with a read
                  int bytes_read = read(f->fd, f->buffer, sizeof f->buffer);
                  if (bytes_read <= 0) {
                      return MY_EOF;
                  }
                  f->n_buffered_bytes = bytes_read;
                  f->next_byte = 0;
              }
          
              // return 1 byte from the buffer
              int byte = f->buffer[f->next_byte];
              f->next_byte++;
              return byte;
          }
          
          int my_fputc(int c, my_file_t *f) {
              if (f->n_buffered_bytes == sizeof f->buffer) {
                  // buffer is full so empty it with a write
                  write(f->fd, f->buffer, sizeof f->buffer); // no error checking
                  f->n_buffered_bytes = 0;
              }
          
              // add byte byte to buffer to be written later
              f->buffer[f->n_buffered_bytes] = c;
              f->n_buffered_bytes++;
              return 1;
          }
          
          int my_fclose(my_file_t *f) {
              // don't keave unwritten bytes
              if (f->is_output_stream && f->n_buffered_bytes > 0) {
                  write(f->fd, f->buffer, f->n_buffered_bytes); // no error checking
              }
          
              int result = close(f->fd);
              free(f);
              return result;
          }
          
          int main(int argc, char *argv[]) {
              my_file_t *input_stream = my_fopen(argv[1], "r");
              if (input_stream == NULL) {
                  perror(argv[1]);
                  return 1;
              }
          
              my_file_t *output_stream = my_fopen(argv[2], "w");
              if (output_stream == NULL) {
                  perror(argv[2]);
                  return 1;
              }
          
              int c;
              while ((c = my_fgetc(input_stream)) != MY_EOF) {
                  my_fputc(c, output_stream);
              }
          
              my_fclose(input_stream);
              my_fclose(output_stream);
          
              return 0;
          }
          

          Download myio_output_buffered.c

          use lseek to access diferent bytes of a file with no error checking
          the return value of thecalls to open, lseek and read should be checked to see if they worked!
          #include <stdio.h>
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          
          int main(int argc, char *argv[]) {
              if (argc != 2) {
                  fprintf(stderr, "Usage: %s <source file>\n", argv[0]);
                  return 1;
              }
          
              int read_file_descriptor = open(argv[1], O_RDONLY);
              char bytes[1];
              // move to a position 1 byte from end of file
              // then read 1 byte
              lseek(read_file_descriptor, -1, SEEK_END);
              read(read_file_descriptor, bytes, 1);
              printf("The last byte of the file is 0x%02x\n", bytes[0]);
          
              // move to a position 0 bytes from start of file
              // then read 1 byte
              lseek(read_file_descriptor, 0, SEEK_SET);
              read(read_file_descriptor, bytes, 1);
              printf("The first byte of the file is 0x%02x\n", bytes[0]);
          
              // move to a position 41 bytes from start of file
              // then read 1 byte
              lseek(read_file_descriptor, 41, SEEK_SET);
              read(read_file_descriptor, bytes, 1);
              printf("The 42nd byte of the file is 0x%02x\n", bytes[0]);
          
              // move to a position 58 bytes from current position
              // then read 1 byte
              lseek(read_file_descriptor, 58, SEEK_CUR);
              read(read_file_descriptor, bytes, 1);
              printf("The 100th byte of the file is 0x%02x\n", bytes[0]);
          
              return 0;
          }
          

          Download lseek.c

          INTERNAL ERROR MISSING FILE: "code/files/fseek.cs"
          INTERNAL ERROR MISSING FILE: "code/files/fseek.cs"
          

          Download fseek.cs

          call stat on each command line argument as simple example of its use
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <stdio.h>
          #include <stdlib.h>
          
          void stat_file(char *pathname);
          
          int main(int argc, char *argv[]) {
              for (int arg = 1; arg < argc; arg++) {
                  stat_file(argv[arg]);
              }
              return 0;
          }
          
          void stat_file(char *pathname) {
              struct stat s;
          
              printf("stat(\"%s\", &s)\n", pathname);
          
              if (stat(pathname, &s) != 0) {
                  perror(pathname);
                  exit(1);
              }
          
              printf(" s.st_ino =   %10ld  # Inode number\n", s.st_ino);
              printf(" s.st_mode =  %10o  # File mode \n", s.st_mode);
              printf(" s.st_nlink = %10ld  # Link count \n", (long)s.st_nlink);
              printf(" s.st_uid =   %10u  # Owner uid\n", s.st_uid);
              printf(" s.st_gid =   %10u  # Group gid\n", s.st_gid);
              printf(" s.st_size =  %10ld  # File size (bytes)\n", (long)s.st_size);
          
              printf(" s.st_mtime = %10ld  # Modification time (seconds since 01/01/70)\n", (long)s.st_mtime);
          }
          

          Download stat.c

          #include <unistd.h>
          #include <sys/types.h>
          #include <stdio.h>
          #include <fcntl.h>
          
          int main(void) {
              int fd = open("sparse_file.txt", O_WRONLY | O_CREAT, 0644);
              write(fd, "Hello, Andrew!\n", 15);
              lseek(fd, 16L * 1000 * 1000 * 1000 * 1000, SEEK_CUR);
              write(fd, "Good Bye Andrew!\n", 17);
              close(fd);
              return 0;
          }
          

          Download create_gigantic_file.c

          use fseek to change arandom bit in a file
          the return value of the calls to fopen, fseek and fgetc should be checked to see if they worked!
          #include <stdio.h>
          #include <stdlib.h>
          #include <time.h>
          
          int main(int argc, char *argv[]) {
              if (argc != 2) {
                  fprintf(stderr, "Usage: %s <source file>\n", argv[0]);
                  return 1;
              }
          
              // open file for reading and writing
              FILE *f = fopen(argv[1], "r+");
          
              // move to end of file
              fseek(f, 0, SEEK_END);
          
              long n_bytes_in_file = ftell(f);
          
              // seed random number generator with current time
              srandom(time(NULL));
          
              // pick a random byte
              long target_byte = random() % n_bytes_in_file;
          
              // move to byte
              fseek(f, target_byte, SEEK_SET);
          
              // read byte
              int byte = fgetc(f);
          
              // pick a random bit
              int bit = random() % 7;
          
              // flip the bit
              int new_byte = byte ^ (1 << bit);
          
              // move back to write byte to same position
              fseek(f, -1, SEEK_CUR);
          
              // write the byte
              fputc(new_byte, f);
          
              fclose(f);
          
              printf("Changed byte %ld of %s from %02x to %02x\n",target_byte, argv[1], byte, new_byte);
              return 0;
          }
          

          Download fuzz.c

          useles suse of chdir() because it only affects this process and any it runs
          #include <unistd.h>
          #include <stdio.h>
          
          int main(int argc, char *argv[]) {
              if (argc > 1 && chdir(argv[1]) != 0) {
                  perror("chdir");
                  return 1;
              }
              return 0;
          }
          

          Download my_cd.c

          use repeated chdir("..") to climb to the root of the file system as a silly example of getcwd and chdir
          #include <unistd.h>
          #include <limits.h>
          #include <stdio.h>
          #include <string.h>
          
          int main(void) {
              char pathname[PATH_MAX];
              while (1) {
                  if (getcwd(pathname, sizeof pathname) == NULL) {
                      perror("getcwd");
                      return 1;
                  }
                  printf("getcwd() returned %s\n", pathname);
          
                  if (strcmp(pathname, "/") == 0) {
                      return 0;
                  }
          
                  if (chdir("..") != 0) {
                      perror("chdir");
                      return 1;
                  }
              }
              return 0;
          }
          

          Download getcwd.c

          list the contenst of directories specified as command-line arguments
          #include <stdio.h>
          #include <dirent.h>
          
          /*
          $ dcc read_directory.c
          $ ./a.out .
          read_directory.c
          a.out
          .
          ..
          $
          */
          
          int main(int argc, char *argv[]) {
          
              for (int arg = 1; arg < argc; arg++) {
                  DIR *dirp = opendir(argv[arg]);
                  if (dirp == NULL) {
                      perror(argv[arg]);  // prints why the open failed
                      return 1;
                  }
          
                  struct dirent *de;
          
                  while ((de = readdir(dirp)) != NULL) {
                      printf("%ld %s\n", de->d_ino, de->d_name);
                  }
          
                  closedir(dirp);
              }
              return 0;
          }
          

          Download read_directory.c

          create the directories specified as command-line arguments
          #include <stdio.h>
          #include <sys/stat.h>
          #include <sys/types.h>
          
          /*
          $ dcc create_directory.c
          $ ./a.out new_dir
          $ ls -ld new_dir
          drwxr-xr-x 2 z5555555 z5555555 60 Oct 29 16:28 new_dir
          $
          */
          
          int main(int argc, char *argv[]) {
          
              for (int arg = 1; arg < argc; arg++) {
                  if (mkdir(argv[arg], 0755) != 0) {
                      perror(argv[arg]);  // prints why the mkdir failed
                      return 1;
                  }
              }
          
              return 0;
          }
          

          Download create_directory.c

          rename the specified file
          #include <stdio.h>
          
          /*
          $ dcc rename.c
          $ ./a.out rename.c renamed.c
          $ ls -l  renamed.c
          renamed.c
          $
          */
          
          int main(int argc, char *argv[]) {
              if (argc != 3) {
                  fprintf(stderr, "Usage: %s <old-filename> <new-filename>\n", argv[0]);
                  return 1;
              }
          
              if (rename(argv[1], argv[2]) != 0) {
                  fprintf(stderr, "%s rename <old-filename> <new-filename> failed:", argv[0]);
                  perror("");
                  return 1;
              }
          
              return 0;
          }
          

          Download rename.c

          silly program which creates a 1000-deep directory hierarchy
          #include <stdio.h>
          #include <unistd.h>
          #include <sys/stat.h>
          #include <sys/types.h>
          #include <limits.h>
          
          
          int main(int argc, char *argv[]) {
          
              for (int i = 0; i < 1000;i++) {
                  char dirname[256];
                  snprintf(dirname, sizeof dirname, "d%d", i);
          
                  if (mkdir(dirname, 0755) != 0) {
                      perror(dirname);
                      return 1;
                  }
                  if (chdir(dirname) != 0) {
                      perror(dirname);
                      return 1;
                  }
          
                  char pathname[1000000];
                  if (getcwd(pathname, sizeof pathname) == NULL) {
                      perror("getcwd");
                      return 1;
                  }
                  printf("\nCurrent directory now: %s\n", pathname);
              }
          
              return 0;
          }
          

          Download nest_directories.c

          write bytes of array to file array.save
          $ dcc write_array.c -o write_array
          $ dcc read_array.c -o read_array
          $ ./write_array
          $ ls -l array.save
          -rw-r--r-- 1 z5555555 z5555555 40 Oct 30 21:46 array.save
          $ ./read_array
          10 11 12 13 14 15 16 17 18 19
          $
          

          #include <unistd.h>
          #include <stdlib.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          #include <stdio.h>
          
          int array[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
          
          int main(int argc, char *argv[]) {
          
              int fd = open("array.save", O_WRONLY|O_CREAT, 0644);
              if (fd < 0) {
                  perror("array.save");
                  return 1;
              }
          
              if (write(fd, array, sizeof array) != sizeof array) {
                  perror("array.save");
                  return 1;
              }
              close(fd);
          
              return 0;
          }
          

          Download write_array.c

          read bytes of array + pointer to file array_pointer.save non-portable between platforms breaks if sizeof int changes or endian-ness changes

          Handling this safely is called serialization: https://en.wikipedia.org/wiki/Serialization
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          #include <stdio.h>
          
          int array[10];
          
          int main(int argc, char *argv[]) {
          
              int fd = open("array.save", O_RDONLY, 0644);
              if (fd < 0) {
                  perror("array.save");
                  return 1;
              }
          
              if (read(fd, array, sizeof array) != sizeof array) {
                  perror("array.save");
                  return 1;
              }
              close(fd);
          
              // print array
              for (int i = 0; i < 10; i++) {
                  printf("%d ", array[i]);
              }
              printf("\n");
          
              return 0;
          }
          

          Download read_array.c

          write bytes of array + pointer to file array_pointer.save
          $ dcc write_pointer.c -o write_pointer
          $ dcc read_pointer.c -o read_pointer
          $ ./write_pointer
          p         = 0x410234
          &array[5] = 0x410234
          array[5]  = 15
          *p        = 15
          $ ls -l array_pointer.save
          -rw-r--r-- 1 z5555555 z5555555 48 Oct 30 21:46 array.save
          $ ./read_pointer
          10 11 12 13 14 15 16 17 18 19
          p         = 0x410234
          &array[5] = 0x4163f4
          array[5]  = 15
          *p        = -1203175425
          $
          

          #include <unistd.h>
          #include <stdlib.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          #include <stdio.h>
          
          int array[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
          int *p = &array[5];
          
          int main(int argc, char *argv[]) {
          
              int fd = open(".save", O_WRONLY|O_CREAT, 0644);
              if (fd < 0) {
                  perror("array_pointer.save");
                  return 1;
              }
          
              if (write(fd, array, sizeof array) != sizeof array) {
                  perror("array_pointer.save");
                  return 1;
              }
          
              if (write(fd, &p, sizeof p) != sizeof p) {
                  perror("array_pointer.save");
                  return 1;
              }
          
              close(fd);
          
              printf("p         = %p\n", p);
              printf("&array[5] = %p\n", &array[5]);
              printf("array[5]  = %d\n", array[5]);
              printf("*p        = %d\n", *p);
              return 0;
          }
          

          Download write_pointer.c

          read bytes of array + pointer to file array_pointer.save breaks even on same machine because address of array different for every execution see https://en.wikipedia.org/wiki/Address_space_layout_randomization
          #include <unistd.h>
          #include <sys/types.h>
          #include <sys/stat.h>
          #include <fcntl.h>
          #include <stdio.h>
          
          int array[10];
          int *p;
          
          int main(int argc, char *argv[]) {
          
              int fd = open("array_pointer.save", O_RDONLY, 0644);
              if (fd < 0) {
                  perror("array_pointer.save");
                  return 1;
              }
          
              if (read(fd, array, sizeof array) != sizeof array) {
                  perror("array_pointer.save");
                  return 1;
              }
          
              if (read(fd, &p, sizeof p) != sizeof p) {
                  perror("array_pointer.save");
                  return 1;
              }
          
              close(fd);
          
              // print array
              for (int i = 0; i < 10; i++) {
                  printf("%d ", array[i]);
              }
              printf("\n");
          
              printf("p         = %p\n", p);
              printf("&array[5] = %p\n", &array[5]);
              printf("array[5]  = %d\n", array[5]);
              printf("*p        = %d\n", *p);
          
              return 0;
          }
          

          Download read_pointer.c

          Unicode
          #include <stdio.h>
          
          int main(void) {
              printf("The unicode code point U+1F600 encodes in UTF-8 as 4 bytes: 0xF0 0x9F 0x98 0x80\n");
              printf("We can output them like this: \xF0\x9F\x98\x80\n");
          }
          

          Download hello.c

          hello.c
          index.txt
          utf8_encode.c
          

          Download index.txt

          #include <stdio.h>
          #include <stdint.h>
          
          void print_utf8_encoding(uint32_t code_point) {
              uint8_t encoding[5] = {0};
          
              if (code_point < 0x80) {
                  encoding[0] = code_point;
              } else if (code_point < 0x800) {
                  encoding[0] = 0xC0 | (code_point >> 6);
                  encoding[1] = 0x80 | (code_point & 0x3f);
              } else if (code_point < 0x10000) {
                  encoding[0] = 0xE0 | (code_point >> 12);
                  encoding[1] = 0x80 | ((code_point >> 6) & 0x3f);
                  encoding[2] = 0x80 | (code_point  & 0x3f);
              } else if (code_point < 0x200000) {
                  encoding[0] = 0xF0 | (code_point >> 18);
                  encoding[1] = 0x80 | ((code_point >> 12) & 0x3f);
                  encoding[2] = 0x80 | ((code_point >> 6)  & 0x3f);
                  encoding[3] = 0x80 | (code_point  & 0x3f);
              }
          
              printf("U+%x  UTF-8: ", code_point);
              for (uint8_t *s = encoding; *s != 0; s++) {
                  printf("0x%02x ", *s);
              }
              printf(" %s\n", encoding);
          }
          
          int main(void) {
              print_utf8_encoding(0x42);
              print_utf8_encoding(0x239);
              print_utf8_encoding(0x10be);
              print_utf8_encoding(0x1F600);
          }
          

          Download utf8_encode.c

          Processes
          simple example of posix_spawn run date --utc to print current UTC
          #include <stdio.h>
          #include <unistd.h>
          #include <spawn.h>
          #include <sys/wait.h>
          
          int main(void) {
              pid_t pid;
              extern char **environ;
              char *date_argv[] = {"/bin/date", "--utc", NULL};
              if (posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, environ) != 0) {
                  perror("spawn");
                  return 1;
              }
          
              int exit_status;
              if (waitpid(pid, &exit_status, 0) == -1) {
                  perror("waitpid");
                  return 1;
              }
          
              printf("/bin/date exit status was %d\n", exit_status);
              return 0;
          }
          

          Download spawn.c

          simple example of program replacing itself with exec
          #include <stdio.h>
          #include <unistd.h>
          
          int main(void) {
          
              char *echo_argv[] = {"/bin/echo", "good-bye", "cruel", "world", NULL};
              execv("/bin/echo", echo_argv);
          
              // if we get here there has been an error
              perror("");
              return 1;
          }
          

          Download exec.c

          #include <stdio.h>
          #include <unistd.h>
          
          int main(void) {
          
              // fork creates 2 identical copies of program
              // only return value is different
          
              pid_t pid = fork();
          
              if (pid == -1) {
                  // the fork failed, perror will print why
                  perror("fork");
              } else if (pid == 0) {
                  printf("I know I am the child because fork() returned %d.\n", pid);
              } else {
                  printf("I know I am the parent because fork() returned %d.\n", pid);
              }
          
              return 0;
          }
          

          Download fork.c

          simple example of classic fork/exec run date --utc to print current UTC
          use posix_spawn instead
          #include <stdio.h>
          #include <unistd.h>
          #include <spawn.h>
          #include <sys/wait.h>
          
          int main(void) {
              pid_t pid = fork();
          
              if (pid == -1) {
                  // the fork failed, perror will print why
                  perror("fork");
              } else if (pid == 0) {
                  // child
          
                  char *date_argv[] = {"/bin/date", "--utc", NULL};
          
                  execv("/bin/date", date_argv);
          
                  // execution will not reach here if exec is successful
                  perror("execvpe");
                  return 1;
              } else {
                  // parent
          
                  int exit_status;
                  if (waitpid(pid, &exit_status, 0) == -1) {
                      perror("waitpid");
                      return 1;
                  }
                  printf("/bin/date exit status was %d\n", exit_status);
              }
          
              return 0;
          }
          

          Download fork_exec.c

          simple example of system run date --utc to print current UTC
          #include <stdio.h>
          #include <stdlib.h>
          
          int main(void) {
          
              // system passes string to a shell for evaluation
              // brittle and highly-vulnerable to security exploits
              // system is suitable for quick debugging and throw-away programs only
          
              int exit_status = system("/bin/date --utc");
              printf("/bin/date exit status was %d\n", exit_status);
              return 0;
          }
          

          Download system.c

          spawn ls -ld adding as argument the arguments we have been given
          #include <stdio.h>
          #include <stdlib.h>
          #include <spawn.h>
          #include <sys/wait.h>
          
          int main(int argc, char *argv[]) {
          
              char *ls_argv[argc + 2];
              ls_argv[0] = "/bin/ls";
              ls_argv[1] = "-ld";
              for (int i = 1; i <= argc; i++) {
                  ls_argv[i + 1] = argv[i];
              }
          
              pid_t pid;
              extern char **environ;
              if (posix_spawn(&pid, "/bin/ls", NULL, NULL, ls_argv, environ) != 0) {
                  perror("spawn");
                  exit(1);
              }
          
              int exit_status;
              if (waitpid(pid, &exit_status, 0) == -1) {
                  perror("waitpid");
                  exit(1);
              }
          
              // exit with whatever status ls exited with
              return exit_status;
          }
          

          Download lsld_spawn.c

          spawn ls -ld adding as argument the arguments we have been given
          #include <stdio.h>
          #include <stdlib.h>
          #include <string.h>
          
          int main(int argc, char *argv[]) {
              char *ls = "/bin/ls -ld";
              int command_length = strlen(ls);
              for (int i = 1; i < argc; i++) {
                  command_length += strlen(argv[i]) + 1;
              }
          
              // create command as string
              char command[command_length + 1];
              strcpy(command, ls);
              for (int i = 1; i <= argc; i++) {
                  strcat(command, " ");
                  strcat(command, argv[i]);
              }
          
              int exit_status = system(command);
              return exit_status;
          }
          

          Download lsld_system.c

          simple example of catching a signal don't compile with dcc
          #include <stdio.h>
          #include <unistd.h>
          #include <signal.h>
          
          void signal_handler(int signum) {
              printf("signal number %d received\n", signum);
          }
          
          int main(void) {
              struct sigaction action = {.sa_handler = signal_handler};
              sigaction(SIGUSR1, &action, NULL);
          
              printf("I am process %d waiting for signal %d\n", getpid(), SIGUSR1);
          
              // loop waiting for signal
              // bad consumes CPU/electricity/battery
              // sleep would be better
          
              while (1) {
              }
          }
          

          Download busy_wait_for_signal.c

          simple example of catching a signal don't compile with dcc
          #include <stdio.h>
          #include <unistd.h>
          #include <signal.h>
          
          void signal_handler(int signum) {
              printf("signal number %d received\n", signum);
          }
          
          int main(void) {
              struct sigaction action = {.sa_handler = signal_handler};
              sigaction(SIGUSR1, &action, NULL);
          
              printf("I am process %d waiting for signal %d\n", getpid(), SIGUSR1);
          
              // suspend execution for 1 hour
              sleep(3600);
          }
          

          Download wait_for_signal.c

          simple example of sending a signal
          #include <stdio.h>
          #include <signal.h>
          #include <stdlib.h>
          
          
          int main(int argc, char *argv[]) {
              if (argc != 3) {
                  fprintf(stderr, "Usage: %s <signal> <pid>\n", argv[0]);
                  return 1;
              }
              int signal = atoi(argv[1]);
              int pid = atoi(argv[2]);
              kill(pid, signal);
          }
          

          Download send_signal.c

          simple example of catching a signal don't compile with dcc
          #include <stdio.h>
          #include <unistd.h>
          #include <signal.h>
          
          
          int main(void) {
              // catch SIGINT which is sent if user types cntrl-d
          
              struct sigaction action = {.sa_handler = SIG_IGN};
              sigaction(SIGINT, &action, NULL);
          
              while (1) {
                  printf("Can't interrupt me, I'm ignoring ctrl-C\n");
                  sleep(1);
              }
          }
          

          Download ignore_control_c.c

          simple example of catching a signal don't compile with dcc
          #include <stdio.h>
          #include <unistd.h>
          #include <signal.h>
          
          
          void ha_ha(int signum) {
              printf("Ha Ha!\n");
          }
          
          int main(void) {
              // catch SIGINT which is sent if user types cntrl-d
          
              struct sigaction action = {.sa_handler = ha_ha};
              sigaction(SIGINT, &action, NULL);
          
              while (1) {
                  printf("Can't interrupt me, I'm ignoring ctrl-C\n");
                  sleep(1);
              }
          }
          

          Download laugh_at_control_c.c

          simple example of catching a signal don't compile with dcc
          #include <stdio.h>
          #include <unistd.h>
          #include <signal.h>
          
          int signal_received = 0;
          
          void stop(int signum) {
              signal_received = 1;
          }
          
          int main(void) {
              // catch SIGINT which is sent if user types cntrl-C
              struct sigaction action = {.sa_handler = stop};
              sigaction(SIGUSR1, &action, NULL);
          
              while (!signal_received) {
                  printf("Type ctrl-c to stop me\n");
                  sleep(1);
              }
              printf("Good bye\n");
          }
          

          Download stop_with_control_c.c

          simple example of catching a signal don't compile with dcc
          #include <stdio.h>
          #include <unistd.h>
          #include <signal.h>
          #include <stdlib.h>
          
          void report_signal(int signum) {
              printf("Signal %d received\n", signum);
              printf("Please send help\n");
              exit(0);
          }
          
          
          int main(int argc, char *argv[]) {
              struct sigaction action = {.sa_handler = report_signal};
              sigaction(SIGFPE, &action, NULL);
          
              // this will produce a divide by zero
              // if there are no command-line arguments
              // which will cause program to receive SIGFPE
          
              printf("%d\n", 42/(argc - 1));
          
              printf("Good bye\n");
          }
          

          Download catch_error.c

          simple example using a pipe with posix_spawn to capture output from spawned process
          #include <stdio.h>
          #include <unistd.h>
          #include <spawn.h>
          #include <sys/wait.h>
          
          int main(void) {
              // create a pipe
              int pipe_file_descriptors[2];
              if (pipe(pipe_file_descriptors) == -1) {
                  perror("pipe");
                  return 1;
              }
          
              // create a list of file actions to be carried out on spawned process
              posix_spawn_file_actions_t actions;
              if (posix_spawn_file_actions_init(&actions) != 0) {
                  perror("posix_spawn_file_actions_init");
                  return 1;
              }
          
              // tell spawned process to close unused read end of pipe
              // without this - spawned process would not receive EOF
              // when read end of the pipe is closed below,
              if (posix_spawn_file_actions_addclose(&actions, pipe_file_descriptors[0]) != 0) {
                  perror("posix_spawn_file_actions_init");
                  return 1;
              }
          
              // tell spawned process to replace file descriptor 1 (stdout)
              // with write end of the pipe
              if (posix_spawn_file_actions_adddup2(&actions, pipe_file_descriptors[1], 1) != 0) {
                  perror("posix_spawn_file_actions_adddup2");
                  return 1;
              }
          
              pid_t pid;
              extern char **environ;
              char *date_argv[] = {"/bin/date", "--utc", NULL};
              if (posix_spawn(&pid, "/bin/date", &actions, NULL, date_argv, environ) != 0) {
                  perror("spawn");
                  return 1;
              }
          
              // close unused write end of pipe
              // in some case processes will deadlock without this
              // not in this case, but still good practice
              close(pipe_file_descriptors[1]);
          
              // creae a stdio stream from read end of pipe
              FILE *f = fdopen(pipe_file_descriptors[0], "r");
              if (f == NULL) {
                  perror("fdopen");
                  return 1;
              }
          
              // read a line from read-end of pipe
              char line[256];
              if (fgets(line, sizeof line, f) == NULL) {
                  fprintf(stderr, "no output from date\n");
                  return 1;
              }
          
              printf("output captured from /bin/date was: '%s'\n", line);
          
              // close read-end of the pipe
              // spawned process will now receive EOF if attempts to read input
              fclose(f);
          
              int exit_status;
              if (waitpid(pid, &exit_status, 0) == -1) {
                  perror("waitpid");
                  return 1;
              }
              printf("/bin/date exit status was %d\n", exit_status);
          
              return 0;
          }
          

          Download spawn_read_pipe.c

          simple example of use to popen to capture output don't compile with dcc - it currently has a bug with popen
          #include <stdio.h>
          #include <stdlib.h>
          
          int main(void) {
          
              // popen passes string to a shell for evaluation
              // brittle and highly-vulnerable to security exploits
              // popen is suitable for quick debugging and throw-away programs only
          
              FILE *p = popen("/bin/date --utc", "r");
              if (p == NULL) {
                  perror("");
                  return 1;
              }
          
              char line[256];
              if (fgets(line, sizeof line, p) == NULL) {
                  fprintf(stderr, "no output from date\n");
                  return 1;
              }
          
              printf("output captured from /bin/date was: '%s'\n", line);
          
              pclose(p);
              return 0;
          }
          

          Download read_popen.c

          simple example of using a pipe to with posix_spawn to sending input to spawned process
          #include <stdio.h>
          #include <unistd.h>
          #include <spawn.h>
          #include <sys/wait.h>
          
          int main(void) {
              // create a pipe
              int pipe_file_descriptors[2];
              if (pipe(pipe_file_descriptors) == -1) {
                  perror("pipe");
                  return 1;
              }
          
              // create a list of file actions to be carried out on spawned process
              posix_spawn_file_actions_t actions;
              if (posix_spawn_file_actions_init(&actions) != 0) {
                  perror("posix_spawn_file_actions_init");
                  return 1;
              }
          
              // tell spawned process to close unused write end of pipe
              // without this - spawned process will not receive EOF
              // when write end of the pipe is closed below,
              // because spawned process also has the write-end open
              // deadlock will result
              if (posix_spawn_file_actions_addclose(&actions, pipe_file_descriptors[1]) != 0) {
                  perror("posix_spawn_file_actions_init");
                  return 1;
              }
          
              // tell spawned process to replace file descriptor 0 (stdin)
              // with read end of the pipe
              if (posix_spawn_file_actions_adddup2(&actions, pipe_file_descriptors[0], 0) != 0) {
                  perror("posix_spawn_file_actions_adddup2");
                  return 1;
              }
          
          
              // create a process running /usr/bin/sort
              // sort reads lines from stdin and prints them in sorted order
              char *sort_argv[] = {"sort", NULL};
              pid_t pid;
              extern char **environ;
              if (posix_spawn(&pid, "/usr/bin/sort", &actions, NULL, sort_argv, environ) != 0) {
                  perror("spawn");
                  return 1;
              }
          
              // close unused read end of pipe
              close(pipe_file_descriptors[0]);
          
              // create a stdio stream from write-end of pipe
              FILE *f = fdopen(pipe_file_descriptors[1], "w");
              if (f == NULL) {
                  perror("fdopen");
                  return 1;
              }
          
              // send some input to the /usr/bin/sort process
              //sort with will print the lines to stdout in sorted order
              fprintf(f, "sort\nwords\nplease\nthese\n");
          
              // close write-end of the pipe
              // without this sort will hang waiting for more input
              fclose(f);
          
              int exit_status;
              if (waitpid(pid, &exit_status, 0) == -1) {
                  perror("waitpid");
                  return 1;
              }
              printf("/usr/bin/sort exit status was %d\n", exit_status);
          
              return 0;
          }
          

          Download spawn_write_pipe.c

          simple example of use to popen to capture output don't compile with dcc - it currently has a bug with popen
          #include <stdio.h>
          #include <stdlib.h>
          
          int main(void) {
          
              // popen passes string to a shell for evaluation
              // brittle and highly-vulnerable to security exploits
              // popen is suitable for quick debugging and throw-away programs only
              //
              // tr a-z A-Z - passes stdin to stdout converting lower case to upper case
          
              FILE *p = popen("tr a-z A-Z", "w");
              if (p == NULL) {
                  perror("");
                  return 1;
              }
          
              fprintf(p, "plz date me\n");
          
              pclose(p);
              return 0;
          }
          

          Download write_popen.c

          print allenvirnoment variables
          #include <stdio.h>
          
          int main(void) {
              extern char **environ;
          
              for (int i = 0; environ[i] != NULL; i++) {
                  printf("%s\n", environ[i]);
              }
          }
          

          Download environ.c

          simple example of accessing an environment variable
          #include <stdio.h>
          #include <stdlib.h>
          
          int main(void) {
              char *value = getenv("STATUS");
              printf("Environment variable 'STATUS' has value '%s'\n", value);
              return 0;
          }
          

          Download getenv.c

          simple example of setting an environment variable
          #include <stdio.h>
          #include <stdlib.h>
          #include <spawn.h>
          #include <sys/wait.h>
          
          int main(void) {
              setenv("STATUS", "great", 1);
              char *getenv_argv[] = {"./getenv", NULL};
              pid_t pid;
              extern char **environ;
              if (posix_spawn(&pid, "./getenv", NULL, NULL, getenv_argv, environ) != 0) {
                  perror("spawn");
                  exit(1);
              }
              return 0;
          }
          

          Download setenv.c

          simple example of using environment variableto change program behaviour run date -to print time
          Perth time printed, due to TZ environment variable
          #include <stdio.h>
          #include <unistd.h>
          #include <spawn.h>
          #include <sys/wait.h>
          
          int main(void) {
              pid_t pid;
          
              char *date_argv[] = {"/bin/date", NULL};
              char *date_environment[] = {"TZ=Australia/Perth", NULL};
              if (posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, date_environment) != 0) {
                  perror("spawn");
                  return 1;
              }
          
              int exit_status;
              if (waitpid(pid, &exit_status, 0) == -1) {
                  perror("waitpid");
                  return 1;
              }
          
              printf("/bin/date exit status was %d\n", exit_status);
              return 0;
          }
          

          Download spawn_environment.c

          #include <stdio.h>
          #include <stdlib.h>
          #include <string.h>
          #include <glob.h>
          
          int main(void) {
          
              printf("Pattern? ");
              char line[256];
              if (fgets(line, sizeof line, stdin) == NULL) {
                  return 0;
              }
          
              char *newline = strrchr(line, '\n');
              if (newline != NULL) {
                  *newline = '\0';
              }
          
              glob_t matches; // holds pattern expansion
              int result = glob(line, GLOB_NOCHECK|GLOB_TILDE, NULL, &matches);
          
              if (result != 0) {
                  printf("glob returns %d\n", result);
              } else {
                  printf("%d matches\n", (int)matches.gl_pathc);
                  for (int i = 0; i < matches.gl_pathc; i++) {
                      printf("\t%s\n", matches.gl_pathv[i]);
                  }
              }
          
              return 0;
          }
          

          Download glob.c

          Virtual Memory
          #include <stdio.h>
          #include <stdlib.h>
          #include <assert.h>
          
          void test0(int x, int y, int a[x][y]) {
              fprintf(stderr, "writing to array i-j order\n");
              for (int i = 0; i < x; i++)
                  for (int j = 0; j < y; j++)
                      a[i][j] = i+j;
          }
          
          void test1(int x, int y, int a[x][y]) {
              fprintf(stderr, "writing to array j-i order\n");
              for (int j = 0; j < y; j++)
                  for (int i = 0; i < x; i++)
                      a[i][j] = i+j;
          }
          
          
          int main(int argc, char*argv[]) {
              int x = atoi(argv[2]);
              int y = atoi(argv[3]);
              fprintf(stderr, "allocating a %dx%d array = %lld bytes\n", x, y, ((long long)x)*y*sizeof (int));
              void *m = malloc(x*y*sizeof (int));
              assert(m);
              if (atoi(argv[1])) {
                  test1(x, y, m);
              } else {
                  test0(x, y, m);
              }
              return 0;
          }
          

          Download locality.c

          Networking

          A simple TCP client

          For more explanation see: https://github.com/angrave/SystemProgramming/wiki/
          #include <stdio.h>
          #include <stdlib.h>
          #include <string.h>
          #include <sys/types.h>
          #include <sys/socket.h>
          #include <netdb.h>
          #include <unistd.h>
          
          int main(void) {
          
              // create a IPv4 TCP/IP socket
              int sock_fd = socket(AF_INET, SOCK_STREAM, 0);
          
              struct addrinfo hints = {
                  .ai_family = AF_INET,        /* IPv4 only */
                  .ai_socktype = SOCK_STREAM,  /* TCP */
              };
          
              // we wish to connect to port 1521 on our local machine
              // first convert it to a struct addrinfo
          
              struct addrinfo *a;
              int s = getaddrinfo("localhost", "1521", &hints, &a);
              if (s != 0) {
                  fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
                  return 1;
              }
          
              // then try to establish a connection
              if (connect(sock_fd, a->ai_addr, a->ai_addrlen) == -1) {
                  perror("connect");
                  exit(2);
              }
          
              char *message = "My name is Ingo Montoya";
              printf("SENDING: %s\n", message);
          
              write(sock_fd, message, strlen(message));
          
              char response[1000];
              int n_bytes = read(sock_fd, response, (sizeof response) - 1);
              response[n_bytes] = '\0';
              printf("RESPONSE WAS: %s\n", response);
          
              close(sock_fd);
          
              return 0;
          }
          

          Download tcp_client.c


          A simple TCP server

          For more explanation see: https://github.com/angrave/SystemProgramming/wiki/
          #include <string.h>
          #include <stdio.h>
          #include <stdlib.h>
          #include <sys/types.h>
          #include <sys/socket.h>
          #include <netdb.h>
          #include <unistd.h>
          
          int main(int argc, char **argv) {
          
              // create a IPv4 TCP/IP socket
              int sock_fd = socket(AF_INET, SOCK_STREAM, 0);
          
              struct addrinfo hints = {
                  .ai_family = AF_INET,
                  .ai_socktype = SOCK_STREAM,
                  .ai_flags = AI_PASSIVE,
              };
          
              // we wish to wait for connections on port 1521 on our local machine
              // first convert it to a struct addrinfo
              struct addrinfo *a;
              int s = getaddrinfo(NULL, "1521", &hints, &a);
              if (s != 0) {
                  fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
                  exit(1);
              }
          
              // attach the address to the socket
              if (bind(sock_fd, a->ai_addr, a->ai_addrlen) != 0) {
                  perror("bind()");
                  return 1;
              }
          
              // specify the maximum number of connections that can be queued for the socket
              if (listen(sock_fd, 16) != 0) {
                  perror("listen()");
                  return 1;
              }
          
              printf("Waiting for connection\n");
              int client_fd;
              while ((client_fd = accept(sock_fd, NULL, NULL)) >= 0) {
          
                  // a real server might spawn a client process here to handle the connection
                  // so it can accept another connection immediately
          
                  printf("Connection made: client_fd=%d\n", client_fd);
          
                  char message[1024];
                  int n_bytes = read(client_fd, message, (sizeof message) - 1);
                  message[n_bytes] = '\0';
                  printf("READ %d BYTES: %s\n", n_bytes, message);
          
                  char response[1024];
                  snprintf(response, sizeof response, "%d bytes received \n", n_bytes);
                  printf("SENDING: %s\n", response);
                  write(client_fd, response, strlen(response));
                  close(client_fd);
              }
          
              close(sock_fd);
          
              return 0;
          }
          

          Download tcp_server.c


          A simple Web server
          #include <string.h>
          #include <stdio.h>
          #include <stdlib.h>
          #include <sys/types.h>
          #include <sys/socket.h>
          #include <netdb.h>
          #include <unistd.h>
          
          int main(int argc, char **argv) {
          
              // create a IPv4 TCP/IP socket
              int sock_fd = socket(AF_INET, SOCK_STREAM, 0);
          
              struct addrinfo hints = {
                  .ai_family = AF_INET,
                  .ai_socktype = SOCK_STREAM,
                  .ai_flags = AI_PASSIVE,
              };
          
              // we wish to wait for connections on port 1521 on our local machine
              // first convert it to a struct addrinfo
              struct addrinfo *a;
              int s = getaddrinfo(NULL, "1080", &hints, &a);
              if (s != 0) {
                  fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
                  exit(1);
              }
          
              // attach the address to the socket
              if (bind(sock_fd, a->ai_addr, a->ai_addrlen) != 0) {
                  perror("bind()");
                  return 1;
              }
          
              // specify the maximum number of connections that can be queued for the socket
              if (listen(sock_fd, 16) != 0) {
                  perror("listen()");
                  return 1;
              }
          
              printf("Connect to me at http://localhost:1080/\n");
              int client_fd;
              while ((client_fd = accept(sock_fd, NULL, NULL)) >= 0) {
          
                  // a real server might spawn a client process here to handle the connection
                  // so it can accept another connection immediately
          
                  printf("Connection made: client_fd=%d\n", client_fd);
          
                  char message[1024];
                  int n_bytes = read(client_fd, message, (sizeof message) - 1);
                  message[n_bytes] = '\0';
                  printf("READ %d BYTES: %s\n", n_bytes, message);
          
                  printf("SENDING BACK ASCII ART\n");
          
                  char *header = "HTTP/1.1 200 OK\r\nContent-type: text/plain\r\n\r\n";
                  write(client_fd, header, strlen(header));
          
                  char *body = "\n |\\/\\/\\/|  \n |      |  \n |      |  \n | (o)(o)  \n C      _) \n  | ,___|  \n  |   /    \n /____\\    \n/      \\\n";
                  write(client_fd, body, strlen(body));
                  close(client_fd);
              }
          
          
              close(sock_fd);
          
              return 0;
          }
          

          Download web_server.c

          Threads

          simple example which launches two threads of execution
          $ gcc -pthread two_threads.c -o two_threads $ ./two_threads|more
          Hello this is thread #1 i=0
          Hello this is thread #1 i=1
          Hello this is thread #1 i=2
          Hello this is thread #1 i=3
          Hello this is thread #1 i=4
          Hello this is thread #2 i=0
          Hello this is thread #2 i=1 ...

          #include <stdio.h>
          #include <pthread.h>
          
          // this function is called to start thread execution
          // it can be given any pointer as argument (int *) in this example
          
          void *run_thread(void *argument) {
              int *p = argument;
          
              for (int i = 0; i < 10; i++) {
                  printf("Hello this is thread #%d: i=%d\n",  *p, i);
              }
          
              // a thread finishes when the function returns or  thread_exit is called
              // a pointer of any type can be returned
              // this can be obtained via thread_join's 2nd argument
              return NULL;
          }
          
          int main(void) {
              //create two threads performing almost the same task
          
              pthread_t thread_id1;
              int thread_number1 = 1;
              pthread_create(&thread_id1, NULL, run_thread, &thread_number1);
          
              int thread_number2 = 2;
              pthread_t thread_id2;
              pthread_create(&thread_id2, NULL, run_thread, &thread_number2);
          
              // wait for the 2 threads to finish
              pthread_join(thread_id1, NULL);
              pthread_join(thread_id2, NULL);
              return 0;
          }
          

          Download two_threads.c


          simple example which launches two threads of execution but demonstrates the perils of accessing non-local variables from a thread
          $ gcc -pthread two_threads_broken.c -o two_threads_broken $ ./two_threads_broken|more
          Hello this is thread 2: i=0
          Hello this is thread 2: i=1
          Hello this is thread 2: i=2
          Hello this is thread 2: i=3
          Hello this is thread 2: i=4
          Hello this is thread 2: i=5
          Hello this is thread 2: i=6
          Hello this is thread 2: i=7
          Hello this is thread 2: i=8
          Hello this is thread 2: i=9
          Hello this is thread 2: i=0
          Hello this is thread 2: i=1
          Hello this is thread 2: i=2
          Hello this is thread 2: i=3
          Hello this is thread 2: i=4
          Hello this is thread 2: i=5
          Hello this is thread 2: i=6
          Hello this is thread 2: i=7
          Hello this is thread 2: i=8
          Hello this is thread 2: i=9 $...

          #include <stdio.h>
          #include <pthread.h>
          
          void *run_thread(void *argument) {
              int *p = argument;
          
              for (int i = 0; i < 10; i++) {
          
                  // variable thread number will probably have changed in main
                  // before execution reaches here
                  printf("Hello this is thread %d: i=%d\n",  *p, i);
          
              }
          
              return NULL;
          }
          
          int main(void) {
              pthread_t thread_id1;
              int thread_number = 1;
              pthread_create(&thread_id1, NULL, run_thread, &thread_number);
          
              thread_number = 2;
              pthread_t thread_id2;
              pthread_create(&thread_id2, NULL, run_thread, &thread_number);
          
              pthread_join(thread_id1, NULL);
              pthread_join(thread_id2, NULL);
              return 0;
          }
          

          Download two_threads_broken.c


          simple example of running an arbitrary number of threads for example:
          $ gcc -pthread n_threads.c -o n_threads $ ./n_threads 10
          Hello this is thread 0: i=0
          Hello this is thread 0: i=1
          Hello this is thread 0: i=2
          Hello this is thread 0: i=3
          Hello this is thread 0: i=4
          Hello this is thread 0: i=5
          Hello this is thread 0: i=6
          Hello this is thread 0: i=7 ...

          #include <stdio.h>
          #include <pthread.h>
          #include <stdlib.h>
          #include <assert.h>
          
          void *run_thread(void *argument) {
              int *p = argument;
          
              for (int i = 0; i < 42; i++) {
                  printf("Hello this is thread %d: i=%d\n",  *p, i);
              }
              return NULL;
          }
          
          int main(int argc, char *argv[]) {
              if (argc != 2) {
                  fprintf(stderr, "Usage: %s <n-threads>\n", argv[0]);
                  return 1;
              }
              int n_threads = strtol(argv[1], NULL, 0);
              assert(n_threads > 0 && n_threads < 100);
          
              pthread_t thread_id[n_threads];
              int argument[n_threads];
          
              for (int i = 0; i < n_threads; i++) {
                  argument[i] = i;
                  pthread_create(&thread_id[i], NULL, run_thread, &argument[i]);
              }
          
              // wait for the threads to finish
              for (int i = 0; i < n_threads;i++) {
                  pthread_join(thread_id[i], NULL);
              }
          
              return 0;
          }
          

          Download n_threads.c


          simple example of dividing a task between n-threads
          compile like this:
          $ gcc -O3 -pthread thread_sum.c -o thread_sum
          one thread takes 10 seconds
          $ time ./thread_sum 1 10000000000
          Creating 1 threads to sum the first 10000000000 integers
          Each thread will sum 10000000000 integers
          Thread summing integers 0 to 10000000000 finished sum is 49999999990067863552

          Combined sum of integers 0 to 10000000000 is 49999999990067863552
          real 0m11.924s user 0m11.919s sys 0m0.004s $


          Four threads runs 4x as fast on a machine with 4 cores
          $ time ./thread_sum 4 10000000000
          Creating 4 threads to sum the first 10000000000 integers
          Each thread will sum 2500000000 integers
          Thread summing integers 2500000000 to 5000000000 finished sum is 9374999997502005248
          Thread summing integers 7500000000 to 10000000000 finished sum is 21874999997502087168
          Thread summing integers 5000000000 to 7500000000 finished sum is 15624999997500696576
          Thread summing integers 0 to 2500000000 finished sum is 3124999997567081472

          Combined sum of integers 0 to 10000000000 is 49999999990071869440
          real 0m3.154s user 0m12.563s sys 0m0.004s $


          Note result is inexact because we use values can't be exactly represented as double and exact value print depends on how many threads we use - becayse we break up the computation differently depdning on number of threads

          #include <stdio.h>
          #include <pthread.h>
          #include <stdlib.h>
          #include <assert.h>
          
          struct job {
              long start;
              long finish;
              double   sum;
          };
          
          void *run_thread(void *argument) {
              struct job *j = argument;
              long start = j->start;
              long finish = j->finish;
              double sum = 0;
          
              for (long i = start; i < finish; i++) {
                  sum += i;
              }
          
              j->sum = sum;
          
              printf("Thread summing integers %10lu to %11lu finished sum is %20.0f\n", start, finish, sum);
              return NULL;
          }
          
          int main(int argc, char *argv[]) {
              if (argc != 3) {
                  fprintf(stderr, "Usage: %s <n-threads> <n-integers-to-sum>\n", argv[0]);
                  return 1;
              }
          
              int n_threads = strtol(argv[1], NULL, 0);
              assert(n_threads > 0 && n_threads < 100);
              long integers_to_sum = strtol(argv[2], NULL, 0);
              assert(integers_to_sum > 0);
          
              long integers_per_thread = (integers_to_sum - 1)/n_threads + 1;
          
              printf("Creating %d threads to sum the first %lu integers\n", n_threads, integers_to_sum);
              printf("Each thread will sum %lu integers\n", integers_per_thread);
          
              pthread_t thread_id[n_threads];
              struct job jobs[n_threads];
          
              for (int i = 0; i < n_threads; i++) {
                  jobs[i].start = i * integers_per_thread;
                  jobs[i].finish = jobs[i].start + integers_per_thread;
                  if (jobs[i].finish > integers_to_sum) {
                      jobs[i].finish = integers_to_sum;
                  }
          
                  // create a thread which will sum integers_per_thread integers
                  pthread_create(&thread_id[i], NULL, run_thread, &jobs[i]);
              }
          
              // wait for each threads to finish
              // then add its individual sum to the overall sum
              double overall_sum = 0;
              for (int i = 0; i < n_threads;i++) {
                  pthread_join(thread_id[i], NULL);
                  overall_sum += jobs[i].sum;
              }
          
              //
              printf("\nCombined sum of integers 0 to %lu is %.0f\n", integers_to_sum, overall_sum);
              return 0;
          }
          

          Download thread_sum.c


          simple example demonstrating unsafe access to a global variable from threads
          $ gcc -O3 -pthread bank_account_broken.c -o bank_account_broken $ ./bank_account_broken
          Andrew's bank account has $108829 $
          #define _POSIX_C_SOURCE 199309L
          
          #include <stdio.h>
          #include <pthread.h>
          #include <time.h>
          
          int bank_account = 0;
          
          // add $1 to Andrew's bank account 100,000 times
          void *add_100000(void *argument) {
          
              for (int i = 0; i < 100000; i++) {
          
                  // execution may switch threads in middle of assignment
                  // between load of variable value
                  // and store of new variable value
                  // changes other thread makes to variable will be lost
                  nanosleep(&(struct timespec){.tv_nsec = 1}, NULL);
                  bank_account = bank_account + 1;
              }
          
              return NULL;
          }
          
          int main(void) {
              //create two threads performing  the same task
          
              pthread_t thread_id1;
              pthread_create(&thread_id1, NULL, add_100000, NULL);
          
              pthread_t thread_id2;
              pthread_create(&thread_id2, NULL, add_100000, NULL);
          
              // wait for the 2 threads to finish
              pthread_join(thread_id1, NULL);
              pthread_join(thread_id2, NULL);
          
              // will probably be much less than $200000
              printf("Andrew's bank account has $%d\n", bank_account);
              return 0;
          }
          

          Download bank_account_broken.c


          simple example demonstrating safe access to a global variable from threads using a mutex (mutual exclusion) lock
          $ gcc -O3 -pthread bank_account_mutex.c -o bank_account_mutex $ ./bank_account_mutex
          Andrew's bank account has $200000 $

          #include <stdio.h>
          #include <pthread.h>
          
          int andrews_bank_account = 0;
          
          pthread_mutex_t bank_account_lock = PTHREAD_MUTEX_INITIALIZER;
          
          
          // add $1 to Andrew's bank account 100,000 times
          void *add_100000(void *argument) {
          
              for (int i = 0; i < 100000; i++) {
          
          
                  pthread_mutex_lock(&bank_account_lock);
          
                  // only one thread can execute this section of code at any time
          
                  andrews_bank_account = andrews_bank_account + 1;
          
                  pthread_mutex_unlock(&bank_account_lock);
              }
          
              return NULL;
          }
          
          int main(void) {
              //create two threads performing  the same task
          
              pthread_t thread_id1;
              pthread_create(&thread_id1, NULL, add_100000, NULL);
          
              pthread_t thread_id2;
              pthread_create(&thread_id2, NULL, add_100000, NULL);
          
              // wait for the 2 threads to finish
              pthread_join(thread_id1, NULL);
              pthread_join(thread_id2, NULL);
          
              // will always be $200000
              printf("Andrew's bank account has $%d\n", andrews_bank_account);
              return 0;
          }
          

          Download bank_account_mutex.c


          simple example demonstrating ensuring safe access to a global variable from threads using a mutex (mutual exclusion) lock
          $ gcc -O3 -pthread bank_account_semphore.c -o bank_account_semphore $ ./bank_account_semphore
          Andrew's bank account has $200000 $

          #include <stdio.h>
          #include <pthread.h>
          #include <semaphore.h>
          
          int andrews_bank_account = 0;
          
          sem_t bank_account_semaphore;
          
          // add $1 to Andrew's bank account 100,000 times
          void *add_100000(void *argument) {
          
              for (int i = 0; i < 100000; i++) {
          
                  // decrement bank_account_semaphore if > 0
                  // otherwise wait until > 0
                  sem_wait(&bank_account_semaphore);
          
                  // only one thread can execute this section of code at any time
                  // because  bank_account_semaphore was initialized to 1
          
                  andrews_bank_account = andrews_bank_account + 1;
          
                  // increment bank_account_semaphore
                  sem_post(&bank_account_semaphore);
              }
          
              return NULL;
          }
          
          int main(void) {
              // initialize bank_account_semaphore to 1
              sem_init(&bank_account_semaphore, 0, 1);
          
              //create two threads performing  the same task
          
              pthread_t thread_id1;
              pthread_create(&thread_id1, NULL, add_100000, NULL);
          
              pthread_t thread_id2;
              pthread_create(&thread_id2, NULL, add_100000, NULL);
          
              // wait for the 2 threads to finish
              pthread_join(thread_id1, NULL);
              pthread_join(thread_id2, NULL);
          
              // will always be $200000
              printf("Andrew's bank account has $%d\n", andrews_bank_account);
          
              sem_destroy(&bank_account_semaphore);
              return 0;
          }
          

          Download bank_account_semphore.c

          simple example which launches two threads of execution which increment a global variable
          #include <stdio.h>
          #include <pthread.h>
          
          int andrews_bank_account1 = 100;
          pthread_mutex_t bank_account1_lock = PTHREAD_MUTEX_INITIALIZER;
          
          int andrews_bank_account2 = 200;
          pthread_mutex_t bank_account2_lock = PTHREAD_MUTEX_INITIALIZER;
          
          // swap values between Andrew's two bank account 100,000 times
          void *swap1(void *argument) {
              for (int i = 0; i < 100000; i++) {
                  pthread_mutex_lock(&bank_account1_lock);
                  pthread_mutex_lock(&bank_account2_lock);
          
                  int tmp = andrews_bank_account1;
                  andrews_bank_account1 = andrews_bank_account2;
                  andrews_bank_account2 = tmp;
          
                  pthread_mutex_unlock(&bank_account2_lock);
                  pthread_mutex_unlock(&bank_account1_lock);
          
              }
          
              return NULL;
          }
          
          // swap values between Andrew's two bank account 100,000 times
          void *swap2(void *argument) {
              for (int i = 0; i < 100000; i++) {
                  pthread_mutex_lock(&bank_account2_lock);
                  pthread_mutex_lock(&bank_account1_lock);
          
                  int tmp = andrews_bank_account1;
                  andrews_bank_account1 = andrews_bank_account2;
                  andrews_bank_account2 = tmp;
          
                  pthread_mutex_unlock(&bank_account1_lock);
                  pthread_mutex_unlock(&bank_account2_lock);
          
              }
          
              return NULL;
          }
          int main(void) {
              //create two threads performing almost the same task
          
              pthread_t thread_id1;
              pthread_create(&thread_id1, NULL, swap1, NULL);
          
              pthread_t thread_id2;
              pthread_create(&thread_id2, NULL, swap2, NULL);
          
              // threads will probably never finish
              // deadlock will likely likely core
              // with one thread holding  bank_account1_lock
              // and waiting for bank_account2_lock
              // and the other  thread holding  bank_account2_lock
              // and waiting for bank_account1_lock
          
              pthread_join(thread_id1, NULL);
              pthread_join(thread_id2, NULL);
          
              return 0;
          }
          

          Download bank_account_deadlock.c

          Exam